Research Review on Parking Space Detection Method
Abstract
:1. Introduction
2. Related Background and Early Research
3. Free-Space-Based Methods
3.1. Direct-Ranging-Based Parking Space Detection Methods
3.2. Probability-Maps-Based Parking Space Detection Methods
3.3. 3D-Reconstruction-Based Parking Space Detection Methods
3.4. Summary
4. Parking-Space-Marking-Based Methods
4.1. Straight-Line-Based Parking Space Detection Methods
4.2. Corner-Based Parking Space Detection Methods
4.3. Learning-Based Methods
4.4. Summary
5. User-Interface-Based Methods
Summary
6. Infrastructure-Based Methods
Summary
7. Summary and Outlook
- Research on Multi-Sensor-Fusion-Based Parking Space Detection
- 2.
- Research on Artificial-Intelligence-Based Parking Space Detection
- 3.
- Research on Parking Space Detection Integrated with Task Requirements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yongming, T. Design of Parking Management Information System. Comput. Inf. Technol. 2006, 10, 102–105. [Google Scholar]
- Tingting, W.; Dalin, J.; Bin, Z.; Fang, W. Overview of Parking Space Detection Methods Based on Video. In Proceedings of the 7th National Conference on Information Acquisition and Processing, Guilin, Guangxi, China, 6 August 2018. [Google Scholar]
- Kaempchen, N.; Franke, U.; Ott, R. Stereo vision based pose estimation of parking lots using 3D vehicle models. Intell. Veh. Symp. 2002. [Google Scholar] [CrossRef]
- Xu, J.; Chen, G.; Xie, M. Vision-guided automatic parking for smart car. Intell. Veh. Symp. 2002, 725–730. [Google Scholar] [CrossRef]
- Pohl, J.; Sethsson, M.; Degerman, P.; Larsson, J. A semi-automated parallel parking system for passenger cars. Proc. Inst. Mech. Eng. J. Auto Eng. 2006, 220, 53–65. [Google Scholar] [CrossRef]
- Jeong, S.H.; Choi, C.G.; Oh, J.N.; Yoon, P.J.; Kim, B.S.; Kim, M.; Lee, K. Low cost design of parallel parking assist system based on an ultrasonic sensor. Int. J. Automot. Technol. 2010, 11, 409–416. [Google Scholar] [CrossRef]
- Jiang, H.; Zhengnan, S.; Shidian, M.; Chenxu, L. Parking Space Scene Recognition Method Based on Multi-sensor Fusion. Appl. Sci. 2020, 2582. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.R.; Maehlisch, M.; Dickmann, J.; Wuensche, H.J. Dynamic Level of Detail 3D Occupancy Grids for Automotive Use. Intell. Veh. Symp. 2010. [Google Scholar] [CrossRef]
- Dube, R.; Hahn, M.; Schutz, M.; Dickmann, J.; Gingras, D. Detection of parked vehicles from a radar based occupancy grid. Intell. Veh. Symp. 2014. [Google Scholar] [CrossRef]
- Elfes, A. Using occupancy grids for mobile robot perception and navigation. Computer 1989, 22, 46–57. [Google Scholar] [CrossRef]
- Loeffler, A.; Ronczka, J.; Fechner, T. Parking lot measurement with 24 GHz short range automotive radar. Radar Symp. 2015. [Google Scholar] [CrossRef]
- Elfes, A. Occupancy Grids: A Stochastic Spatial Representation for Active Robot Perception. 2013. Available online: https://arxiv.org/abs/1304.1098 (accessed on 8 November 2020).
- Prophet, R.; Hoffmann, M.; Vossiek, M.; Gang, L.; Sturm, C. Parking space detection from a radar based target list. In Proceedings of the IEEE Mtt-s International Conference on Microwaves for Intelligent Mobility, Nagoya, Japan, 19–21 March 2017. [Google Scholar]
- Ibisch, A.; Stümper, S.; Altinger, H.; Neuhausen, M.; Tschentscher, M.; Schlipsing, M.; Salinen, J.; Knoll, A. Towards autonomous driving in a parking garage: Vehicle localization and tracking using environment-embedded LIDAR sensors. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013. [Google Scholar]
- Scheunert, U.; Fardi, B.; Mattern, N.; Wanielik, G.; Keppeler, N. Free space determination for parking slots using a 3D PMD sensor. Intell. Veh. Symp. 2007. [Google Scholar] [CrossRef]
- Park, W.J.; Kim, B.S.; Seo, D.E.; Kim, D.S.; Lee, K.H. Parking space detection using ultrasonic sensor in parking assistance system. Intell. Veh. Symp. 2008. [Google Scholar] [CrossRef]
- Zhou, J.; Navarro-Serment, L.E.; Hebert, M. Detection of parking spots using 2D range data. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 16–19 September 2012. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E.; Singer, Y. Improved Boosting Algorithms Using Confidence-rated Predictions. Mach. Learn. 1999, 37, 297–336. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Wei, Y.; Guo, I.Y. AUTOMATIC PARKING OF SELF-DRIVING CAR BASED ON LIDAR. ISPRS Int. Arch. Photogramm. Remot. Sens. Spat. Inf. Sci. 2017, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Unger, C.; Wahl, E.; Ilic, S. Applications, Parking assistance using dense motion-stereo. Mach. Vis. Appl. 2014, 25, 561–581. [Google Scholar] [CrossRef]
- Unger, C.; Benhimane, S.; Wahl, E.; Navab, N. Efficient Disparity Computation without Maximum Disparity for Real-Time Stereo Vision. In Proceedings of the British Machine Vision Conference, BMVC 2009, London, UK, 7–10 September 2009. [Google Scholar]
- Jung, H.G.; Kim, D.S.; Kim, J. Light-Stripe-Projection-Based Target Position Designation for Intelligent Parking-Assist System. IEEE Trans. Intell. Transp. Syst. 2010, 11, 942–953. [Google Scholar] [CrossRef]
- Pelaez, L.P.; Recalde, M.E.V.; Munoz, E.D.M.; Larrauri, J.M.; Hillbrand, B. Car parking assistance based on Time-or-Flight camera. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Yan, M.; Jun, S.; Yiping, T. Research on parking space detection technology based on machine vision. Comput. Meas. Control 2012, 20, 638–641. [Google Scholar]
- Fintzel, K.; Bendahan, R.; Vestri, C.; Bougnoux, S.; Kakinami, T. 3D parking assistant system. In Proceedings of the Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004. [Google Scholar] [CrossRef]
- Vestri, C.; Bougnoux, S.; Bendahan, R.; Fintzel, K.; Kakinami, T. Evaluation of a vision-based parking assistance system. In Proceedings of the Intelligent Transportation Systems, Vienna, Austria, 13–16 September 2005. [Google Scholar] [CrossRef]
- Jung, H.G.; Kim, D.S.; Yoon, P.J.; Kim, J. 3D Vision System for the Recognition of Free Parking Site Location. 2006. Available online: http://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE00717636 (accessed on 18 November 2020).
- Kamiyama, T.; Maeyama, S.; Okawa, K.; Watanabe, K.; Nogami, Y. Recognition of parking spaces on dry and wet road surfaces using received light intensity of laser for ultra small EVs. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Yang, M.; Wang, X.; Ye, L.; Guo, C. Automatic Parking Based on a Bird’s Eye View Vision System. Adv. Mech. Eng. 2014, 2014, 847406. [Google Scholar] [CrossRef]
- Hamada, K.; Hu, Z.; Fan, M.; Hui, C. Surround view based parking lot detection and tracking. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015. [Google Scholar] [CrossRef]
- Lee, S.; Seo, S. Available parking slot recognition based on slot context analysis. IET Intell. Transp. Syst. 2016, 10, 594–604. [Google Scholar] [CrossRef]
- Lei, L.; Li, C.; Zhang, Q.; Tao, G.; Miao, Z. Automatic parking slot detection based on around view monitor (AVM) systems. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017. [Google Scholar] [CrossRef]
- Zong, W.; Chen, Q.J.S. A Robust Method for Detecting Parking Areas in Both Indoor and Outdoor Environments. Sensors 2018, 18, 1903. [Google Scholar] [CrossRef] [Green Version]
- Gioi, R.G.V.; Jakubowicz, J.R.M.; Morel, J.M.; Randall, G. LSD: A Line Segment Detector. Image Process. Line 2012, 2, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lin, C.; Zhao, Y.J.S. Geometric Features-Based Parking Slot Detection. Sensors 2018, 18, 2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changle, L.; Lei, L.; Xuelian, C.; Qishi, Z.; Rui, C.; Lina, Z. Automatic Parking Space Detection and Recognition System Based on Panoramic Vision Assistant System. Available online: https://www.zhangqiaokeyan.com/patent- detail/06120110220025. html (accessed on 13 November 2020).
- Jae, S.; Ho, J.J.S. A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles. Sensors 2018, 18, 1213. [Google Scholar]
- Suhr, J.K.; Jung, H.G. Full-automatic recognition of various parking slot markings using a hierarchical tree structure. Opt. Eng. 2013, 52, 7203. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. Sensor Fusion-Based Vacant Parking Slot Detection and Tracking. IEEE Trans. Intell. Transp. Syst. 2014, 15, 21–36. [Google Scholar] [CrossRef]
- Li, L.; Lin, Z.; Li, X.; Xiao, L.; Lu, X. Vision-based parking-slot detection: A benchmark and a learning-based approach. In Proceedings of the IEEE International Conference on Multimedia & Expo, Hong Kong, China, 10–14 July 2017. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, J.; Li, X.; Lu, X. Vision-based Parking-slot Detection: A DCNN-based Approach and A Large-scale Benchmark Dataset. IEEE Trans. Image Process. 2018, 27, 5350–5364. [Google Scholar] [CrossRef]
- Jang, C.; Sunwoo, M. Applications, Semantic Segmentation-Based Parking Space Detection with Standalone Around View Monitoring System. 2019. Available online: https://link.springer.com/article/10.1007/s00138–018–0986-z (accessed on 5 November 2020).
- Huang, J.; Zhang, L.; Shen, Y.; Zhang, H.; Yang, Y. DMPR-PS: A Novel Approach for Parking-Slot Detection Using Directional Marking-Point Regression. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019. [Google Scholar] [CrossRef]
- Deshun, H.; Erkang, C. Automatic Parking Space Detection Method Based on Deep Learning. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120100702220.html (accessed on 18 November 2020).
- Jung, H.G.; Dong, S.K.; Yoon, P.J.; Kim, J. Structure Analysis Based Parking Slot Marking Recognition for Semi-automatic Parking System. Comput. Vis. 2010, 4109, 384–393. [Google Scholar]
- Jung, H.G.; Yun, H.L.; Kim, J. Uniform User Interface for Semiautomatic Parking Slot Marking Recognition. IEEE Trans. Veh. Technol. 2010, 59, 616–626. [Google Scholar] [CrossRef]
- Hiramatsu, S.; Hibi, A.; Yu, T.; Kakinami, T.; Nakamura, M. Rearview Camera Based Parking Assist System with Voice Guidance. Sae World Congr. Exhib. 2002. [Google Scholar] [CrossRef]
- Jung, H.G.; Choi, C.G.; Yoon, P.J.; Kim, J. Novel user interface for semi-automatic parking assistance. In Proceedings of the FISITA World Automotive Congress, Yokohama, Japan, 22–27 October 2006; pp. 1–10. [Google Scholar]
- Furutani, M. In Obstacle Detection Systems for Vehicle Safety. 2004. Available online: https://www.sae.org/publications/technical-papers/content/2004–21–0057/ (accessed on 15 November 2020).
- Wada, M.; Kang, S.Y.; Hashimoto, H. Development of advanced parking assistance system. IEEE Trans. Ind. Electron. 2003, 50, 4–17. [Google Scholar] [CrossRef]
- Wada, M.; Mao, X.; Hashimoto, H.; Mizutani, M.; Saito, M. iCAN: Pursuing Technology for Near-Future ITS. IEEE Intell. Syst. 2004, 19, 18–23. [Google Scholar] [CrossRef]
- Xinpeng, C.; Xuguang, H.; Wei, X. Intelligent Parking Lot Parking Space Guidance Management System. CN. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120365383.html (accessed on 12 November 2020).
- Yan, G.; Yang, W.; Rawat, D.B.; Olariu, S. SmartParking: A Secure and Intelligent Parking System. IEEE Intell. Transp. Syst. Mag. 2011, 3, 18–30. [Google Scholar]
- Ziyao, L.; Zhiqiang, N.; Siyu, L.; Bo, L. An Intelligent Parking Guidance and Parking Space Reservation Management System. 2019. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120209417372.html (accessed on 12 December 2020).
- Jian, L.; Shaoshan, L.; Liang, H.; Bo, Y. Automatic Parking Assistant Method and System of Unmanned Vehicle Based on GPS. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120109858479.html (accessed on 12 December 2020).
- Jingchang, X. Navigation system of Intelligent Parking Based on GPS. Available online: https://www.zhangqiaokeyan.com/ patent-detail/06120105600984.html (accessed on 1 December 2020).
- Yongsheng, C.; Demin, L.; Guanglin, Z. The Guidance System of UAV Parking Space Based on INTERNET of Things. Available online: https://www.zhangqiaokeyan.com/patent-detail/06120109146805.html (accessed on 12 December 2020).
Sensor Type | Advantages | Disadvantages |
---|---|---|
Ultrasonic radars and short-range radars |
|
|
Laser scanners |
|
|
Vision sensors |
|
|
Methods | Characteristics | Method Process |
---|---|---|
Direct-ranging-based methods | Using direct range sensor to measure the distance to surrounding obstacles | |
Probability-maps-based methods | Using probability maps to indicate the occupancy of the surrounding space | |
3D-reconstruction-based methods | Reconstructing the 3D environment from the data measured by the sensors |
Methods | Characteristics | Method Process |
---|---|---|
straight-line-based methods | Inferring the parking space by detecting straight line segments | |
corner detection-based methods | By detecting corner points, infer the parking space based on the corner point combination | |
learning-based detection methods | By extracting the features of the marked points, the parking space is determined according to the type of the marked points |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, Y.; Zhang, L.; Cao, Y.; Guo, S.; Li, H. Research Review on Parking Space Detection Method. Symmetry 2021, 13, 128. https://doi.org/10.3390/sym13010128
Ma Y, Liu Y, Zhang L, Cao Y, Guo S, Li H. Research Review on Parking Space Detection Method. Symmetry. 2021; 13(1):128. https://doi.org/10.3390/sym13010128
Chicago/Turabian StyleMa, Yong, Yangguo Liu, Lin Zhang, Yuanlong Cao, Shihui Guo, and Hanxi Li. 2021. "Research Review on Parking Space Detection Method" Symmetry 13, no. 1: 128. https://doi.org/10.3390/sym13010128
APA StyleMa, Y., Liu, Y., Zhang, L., Cao, Y., Guo, S., & Li, H. (2021). Research Review on Parking Space Detection Method. Symmetry, 13(1), 128. https://doi.org/10.3390/sym13010128