Elite Exploitation: A Combination of Mathematical Concept and EMO Approach for Multi-Objective Decision Making
Abstract
:1. Introduction
- Inspired by classic Social Darwinism, we proposed an elite exploitation strategy:
- For enhancing diversity, we design a crowd distance-based roulette.
- For better applicability, we design a decision-makers’ preference-based mechanism to control the exploitation intensity.
- For improving the convergence performance, we propose a novel exploitation system and a symmetry exploitation operator for local search (i.e., individual exploitation).
- We test our proposed algorithm with ten widely used algorithms on 36 test problems with different complexity, and the simulated experiment results proved the effectiveness of our method.
2. Brief Review of NSGA-II Framework
3. Proposed NSGA-II-BnF Algorithm
Algorithm 1 Main Loop of NSGA-II-BnF |
Input: N, k, r, |
Output: population set PInitialize: population set P |
1: for each do |
2: Evaluation; |
3: Non-Dominated sort; |
4: Crowding distance; |
5: end for |
6: =1; |
7: while do |
8: genetic procedures to population P; |
9: obtain an offspring set Q; |
10: for each do |
11: Evaluation; |
12: Non-Dominated sort; |
13: Crowding distance; |
14: end for |
15: ; |
16: do Non-dominated sort operate to set P; |
17: biased resource allocation strategy; //(Algorithm 2); |
18: obtain an archive D; |
19: do self-guided fast symmetry individual exploitation to archive D;//(Algorithm 3); |
20: obtain a set K of generated neighbors; |
21: for each do |
22: Evaluation; |
23: Non-Dominated sort; |
24: Crowding distance; |
25: end for |
26: ; |
27: do Non-dominated sort operate to set P; |
28: do elite strategy to set P; |
29: =+1; |
30: end while |
31: obtain a population set P; |
3.1. Biased Elite Allocation Strategy
Algorithm 2 Biased Elite Allocation Strategy |
Input: set P, k |
Output: |
1: for each do |
2: if Non-Dominated rank of ==1 then |
3: ; |
4: end if |
5: end for |
6: for each do |
7: calculate the cumulative probability by Equations (2) and (3); |
8: end for |
9: m=1; |
10: while do |
11: h=rand(1); |
12: if then |
13: ; |
14: else |
15: find that makes holds; |
16: ; |
17: end if |
18: +1; |
19: end while |
20: obtain an ; |
3.1.1. The Size of Candidate Group
3.1.2. Allocation Procedure
- (1)
- Apply crowding distance-based normalization calculated as below to individuals in set T.
- (2)
- Calculate the cumulative probability of each defined as
- (3)
- Generate a random number h in [0,1].
- (4)
- If , save individual at ; otherwise, find the individual , which makes holds, and save individual at .
- (5)
- Repeat steps (3) and (4) until there are members in .
3.2. Self-Guided Fast Symmetry Individual Exploitation Approach
Algorithm 3 Self-guided fast symmetry individual exploitation |
Input: n, archive D, a, b, r, |
Output: set K |
1: Initialize: variable s, i; |
2: for each member in do; |
3: s=1; |
4: for do; |
5: l=round(rand(1)*())); |
6: calculate turbulence v by l and Equation (7); |
7: j=randperm(n,1); |
8: if then |
9: calculate new dimension by Equation (5); |
10: replace the by ; |
11: obtain a neighbor of ; |
12: ; |
13: else |
14: goto line 6; |
15: end if |
16: ; |
17: end for |
18: end for |
19: obtain a set K of neighbors; |
3.2.1. Self-Guided Individual Exploitation System
3.2.2. Tanh-Based Exploitation Operator
- (1)
- Generate a set L with r random number(s), the value of which is in the interval ; for an example, we set ;
- (2)
- For each , calculate as below, which results in the set of turbulence values .
- (3)
- Select j-th dimension of randomly.
- (4)
- After obtaining the turbulence, we use Equation (5) to generate the new j-th dimension , then, we generate neighbors of defined as
4. Experiment
4.1. Test Problems
4.2. Indicators
4.3. Experiment Settings
4.4. Comparison among NSGA-II-BnF and Four NSGA-II Series Algorithms
4.5. Comparison Among NSGA-II-BnF and Four Classic Algorithms
4.6. Comparison between NSGA-II-BnF and NSGA-II
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer: Boston, MA, USA, 1999. [Google Scholar]
- Liu, Y.; Qin, H.; Zhang, Z.; Yao, L.; Wang, C.; Mo, L.; Ouyang, S.; Li, J. A region search evolutionary algorithm for many-objective optimization. Inf. Sci. 2019, 488, 19–40. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Chang, Y.; Cai, X.; Zhang, W. Improved NSGA-III with selection-and-elimination operator. Swarm Evol. Comput. 2019, 49, 23–33. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Thiele, L. Spea2: Improving the strength pareto evolutionary algorithm. TIK-Report Computer Engineering and Communication Networks Lab(TIK), Swiss Federal Institute of Technology (ETH) Zurich, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich, Switzerland, Sept. 2001, 103. Available online: https://doi.org/10.3929/ethz-a-004284029 (accessed on 30 December 2020).
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Cheng, R.; Zhang, X. A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 23, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Gui, L. An Expanded Particle Swarm Optimization Based on Multi-Exemplar and Forgetting Ability. Inf. Sci. 2020, 508, 105–120. [Google Scholar] [CrossRef]
- Xu, G.; Cui, Q.; Shi, X. Particle swarm optimization based on dimensional learning strategy. Swarm Evol. Comput. 2019, 45, 33–51. [Google Scholar] [CrossRef]
- Nebro, A.J.; Durillo, J.J.; Garcia-Nieto, J.; Coello, C.A.C.; Alba, E. Smpso: A new pso-based metaheuristic for multi-objective optimization. In Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, Nashville, TN, USA, 30 March–2 April 2009; pp. 66–73. [Google Scholar]
- Liu, Y.; Zhu, N.; Li, K.; Li, M.; Zheng, J.; Li, K. An angle dominance criterion for evolutionary many-objective optimization. Inf. Sci. 2020, 509, 376–399. [Google Scholar] [CrossRef]
- Said, L.B.; Bechikh, S.; Ghédira, K. The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making. IEEE Trans. Evol. Comput. 2010, 14, 801–818. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multiobjective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Liang, Z.; Luo, T.; Hu, K.; Ma, X.; Zhu, Z. An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection. IEEE Trans. Evol. Comput. 2020, 99, 1–14. [Google Scholar] [CrossRef]
- Hong, W.; Tang, K.; Zhou, A.; Ishibuchi, H.; Yao, X. A scalable indicator-based evolutionary algorithm for large-scale multiobjective optimization. IEEE Trans. Evol. Comput. 2018, 23, 525–537. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Cheng, F.; Jin, Y. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 2017, 22, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, M.L.D.; Graditi, G.; Sanseverino, E.R. A generalized framework for optimal sizing of distributed energy resources in microgrids using an indicator-based swarm approach. IEEE Trans. Ind. Inform. 2013, 10, 152–162. [Google Scholar] [CrossRef]
- Li, F.; Cheng, R.; Liu, J.; Jin, Y. A two-stage r2 indicator based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 2018, 67, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Trans. Evol. Comput. 2018, 23, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Pamulapati, T.; Mallipeddi, R.; Nagaratnam, P. ISDE—An Indicator for Multi and Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 23, 346–352. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, Q. Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2015, 20, 52–64. [Google Scholar] [CrossRef]
- Jaimes, A.L.; Coello, C.A.C.; Aguirre, H.; Tanaka, K. Objective space partitioning using conflict information for solving manyobjective problems. Inf. Sci. 2014, 268, 305–327. [Google Scholar] [CrossRef]
- Lin, Q.; Jin, G.; Ma, Y.; Wong, K.; Coello, C.A.C.; Li, J.; Chen, J.; Zhang, J. A diversity-enhanced resource allocation strategy for decomposition-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 2018, 48, 2388–2401. [Google Scholar]
- Li, H.; Zhang, Q. Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans. Evol. Comput. 2008, 13, 284–302. [Google Scholar] [CrossRef]
- Elarbi, M.; Bechikh, S. A new decomposition-based NSGA-II for many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1191–1210. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Yang, J.; Zhu, Z.; Tian, G. On tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 2018, 22, 226–244. [Google Scholar] [CrossRef]
- Han, D.; Du, W.; Du, W.; Jin, Y.; Wu, C. An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Inf. Sci. 2019, 491, 204–222. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, W.; Li, H. The performance of a new version of moea/d on cec09 unconstrained mop test instances. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 203–208. [Google Scholar]
- Wang, L.; Zhang, Q.; Zhou, A.; Gong, M.; Jiao, L. Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans. Evol. Comput. 2015, 20, 475–480. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, A.; Zhang, G. A multiobjective evolutionary algorithm based on decomposition and preselection. In Bio-Inspired Computing-Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 631–642. [Google Scholar]
- Martínez, S.Z.; Coello, C.A.C. A multi-objective particle swarm optimizer based on decomposition. In Proceedings of the Conference on Genetic & Evolutionary, Dublin, Ireland, 12–16 June 2011; pp. 69–76. [Google Scholar]
- Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A. A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition. IEEE Trans. Evol. Comput. 2016, 21, 440–462. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, Z.; Ma, T. Short Survey and Challenges for Multiobjective Evolutionary Algorithms Based on Decomposition. In Proceedings of the 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), Beijing, China, 28–31 August 2019. [Google Scholar]
- Crepinsek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Mongus, D.; Repnik, B.; Mernik, M.; Žalik, B. A hybrid evolutionary algorithm for tuning a cloth-simulation model. Appl. Soft Comput. 2012, 12, 226–273. [Google Scholar] [CrossRef]
- Ong, Y.S.; Lim, M.H.; Chen, X. Memetic Computation - Past, Present & Future. IEEE Comput. Intell. Mag. 2010, 5, 24–31. [Google Scholar]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization; Springer: London, UK, 2006; pp. 105–145. [Google Scholar]
- Huband, S.; Barone, L.C.; While, L.; Hingston, P.F. A scalable multiobjective test problem toolkit. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; pp. 280–295. [Google Scholar]
- Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multiobjective optimization test instances for the CEC 2009 special session and competition. In Mechanical Engineering; American Society of Mechanical Engineers(ASME): Three Park Ave, NY, USA, 2009; pp. 1–30. [Google Scholar]
- Agrawal, R.B.; Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- ling, W.; Dazhong, Z. Simulated annealing algorithm based on cauchy and gaussian distributed state generator. J. Tsinghua Univ. (Sci. Technol.) 2000, 40, 109–112. [Google Scholar]
- Yabe, T.; Aoki, T. A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 1991, 66, 219–232. [Google Scholar] [CrossRef]
- Bosman, P.A.N.; Thierens, D. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Zitzler, E.; Thiele, L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef] [Green Version]
Algorithm | Parameter Settings |
---|---|
NSGA-II-conflict | |
rNSGA-II | |
RPDNSGA-II | |
NSGA-II-SDR | |
MOEA/D-DE | |
dMOPSO | |
SMOPSO | |
SPEA-II | |
NSGA-II-BnF |
Problem | NSGA-IIconflict | rNSGA-II | RPDNSGA-II | NSGAII-SDR | NSGA-II-BnF |
---|---|---|---|---|---|
DTLZ1 | 9.9524 × 10 (5.42 × 10) − | + | 1.0742 × 10 (1.14 × 10) − | 2.1962 × 10 (5.68 × 10) − | 2.9848 × 10 (6.61 × 10) |
DTLZ2 | + | 5.3578 × 10 (3.96 × 10) − | 8.1904 × 10 (1.46 × 10) − | 2.9394 × 10 (7.70 × 10) − | 2.0754 × 10 (1.65 × 10) |
DTLZ3 | 1.1864 × 10 (2.46 × 10) = | = | 2.0767 × 10 (5.22 × 10) − | 2.3742 × 10 (6.63 × 10) − | 1.1138 × 10 (2.00 × 10) |
DTLZ4 | 8.1915 × 10 (1.46 × 10) − | 3.0173 × 10 (1.28 × 10) − | + | 1.0502 × 10 (6.65 × 10) − | 2.6736 × 10 (1.35 × 10) |
DTLZ5 | 8.1929 × 10 (1.46 × 10) − | 5.3366 × 10 (4.00 × 10) − | + | 2.9406 × 10 (4.72 × 10) − | 2.0743 × 10 (1.64 × 10) |
DTLZ6 | 8.2086 × 10 (1.46 × 10) − | 1.2965 × 10 (4.41 × 10) − | + | 1.5183 × 10 (1.01 × 10) − | 2.0435 × 10 (1.12 × 10) |
DTLZ7 | 8.6756 × 10 (1.55 × 10) − | 1.0854 × 10 (1.57 × 10) − | 1.5021 × 10 (2.11 × 10) − | 4.5382 × 10 (3.94 × 10) − | |
WFG1 | 1.3503 × 10 (2.74 × 10) − | 3.2202 × 10 (7.66 × 10) − | 7.8765 × 10 (6.57 × 10) − | 1.4982 × 10 (1.27 × 10) − | |
WFG2 | 1.1640 × 10 (1.09 × 10) − | 1.5311 × 10 (1.91 × 10) − | 1.1444 × 10 (3.26 × 10) − | 1.2612 × 10 (1.03 × 10) − | |
WFG3 | 1.1179 × 10 (2.53 × 10) − | 1.7132 × 10 (1.47 × 10) − | 8.1188 × 10 (2.58 × 10) − | 7.8637 × 10 (3.20 × 10) − | |
WFG4 | 9.9711 × 10 (6.50 × 10) − | 1.7631 × 10 (2.16 × 10) − | 4.6756 × 10 (6.22 × 10) − | 8.9396 × 10 (4.20 × 10) − | |
WFG5 | 1.8178 × 10 (2.96 × 10) − | 9.6963 × 10 (1.95 × 10) − | 6.6504 × 10 (2.28 × 10) − | 7.2977 × 10 (2.33 × 10) − | |
WFG6 | = | 1.8242 × 10 (1.24 × 10) − | 9.6338 × 10 (7.35 × 10) − | 5.8111 × 10 (2.86 × 10) = | 5.7762 × 10 (2.04 × 10) |
WFG7 | 9.9728 × 10 (1.66 × 10) − | 2.1395 × 10 (8.76 × 10) − | 7.2479 × 10 (1.99 × 10) − | 8.8962 × 10 (3.79 × 10) − | |
WFG8 | 9.5071 × 10 (5.46 × 10) − | 2.8398 × 10 (2.09 × 10) − | 5.4962 × 10 (3.88 × 10) − | + | 1.0804 × 10 (1.23 × 10) |
WFG9 | 9.8125 × 10 (1.38 × 10) − | 1.3394 × 10 (3.89 × 10) − | 2.1992 × 10 (1.91 × 10) − | 3.6133 × 10 (4.90 × 10) − | |
UF1 | 1.9890 × 10 (1.85 × 10) − | 2.7593 × 10 (1.64 × 10) − | 1.1126 × 10 (3.24 × 10) − | + | 7.7956 × 10 (2.01 × 10) |
UF2 | 1.2273 × 10 (1.47 × 10) − | 2.9076 × 10 (1.27 × 10) − | + | 5.3241 × 10 (5.23 × 10) − | 3.5607 × 10 (9.04 × 10) |
UF3 | 6.6889 × 10 (2.62 × 10) − | 3.0716 × 10 (1.14 × 10) − | + | 2.0806 × 10 (5.23 × 10) − | 6.5324 × 10 (4.05 × 10) |
UF4 | 3.5123 × 10 (4.35 × 10) − | 7.8673 × 10 (1.14 × 10) − | 7.6674 × 10 (7.39 × 10) − | 5.0782 × 10 (4.89 × 10) − | |
UF5 | 1.9618 × 10 (7.81 × 10) − | 3.9719 × 10 (1.20 × 10) − | 6.0782 × 10 (1.05 × 10) − | 2.2774 × 10 (4.22 × 10) = | |
UF6 | 2.0294 × 10 (8.68 × 10) − | + | 2.8153 × 10 (1.26 × 10) − | 1.2945 × 10 (3.32 × 10) = | 1.3067 × 10 (4.42 × 10) |
UF7 | 5.7339 × 10 (2.80 × 10) − | 4.6755 × 10 (1.44 × 10) − | + | 4.9880 × 10 (6.35 × 10) = | 5.3926 × 10 (5.20 × 10) |
UF8 | 6.3153 × 10 (5.41 × 10) − | 5.1939 × 10 (5.87 × 10) − | 2.9302 × 10 (6.47 × 10) − | + | 2.4502 × 10 (2.99 × 10) |
UF9 | 1.3582 × 10 (3.21 × 10) − | 9.7059 × 10 (4.32 × 10) − | = | 1.9939 × 10 (8.01 × 10) = | 2.4376 × 10 (9.82 × 10) |
UF10 | 8.1630 × 10 (8.62 × 10) = | 5.1885 × 10 (1.11 × 10) − | 6.0368 × 10 (1.94 × 10) − | 4.2669 × 10 (1.32 × 10) − | |
CF1 | 5.7587 × 10 (2.58 × 10) = | 6.7309 × 10 (4.07 × 10) − | 7.0711 × 10 (3.40 × 10) − | 6.1205 × 10 (1.53 × 10) − | |
CF2 | 3.5805 × 10 (5.78 × 10) − | 1.5013 × 10 (1.70 × 10) − | + | 5.2987 × 10 (1.36 × 10) = | 5.2831 × 10 (2.41 × 10) |
CF3 | 5.9873 × 10 (7.02 × 10) = | 2.7659 × 10 (9.23 × 10) = | + | 2.6032 × 10 (8.42 × 10) = | 2.9505 × 10 (8.98 × 10) |
CF4 | 5.5640 × 10 (7.77 × 10) − | 3.0471 × 10 (1.28 × 10) = | 5.7237 × 10 (5.73 × 10) − | 3.0751 × 10 (5.52 × 10) − | |
CF5 | 9.3437 × 10 (1.08 × 10) = | 3.6892 × 10 (1.26 × 10) = | 4.0063 × 10 (1.41 × 10) − | 4.0179 × 10 (1.33 × 10) − | |
CF6 | 3.3716 × 10 (3.30 × 10) = | 3.3937 × 10 (1.18 × 10) − | 3.3920 × 10 (1.08 × 10) − | 1.7075 × 10 (5.98 × 10) = | |
CF7 | 5.0530 × 10 (1.97 × 10) = | 4.5555 × 10 (1.82 × 10) = | 4.5549 × 10 (1.66 × 10) = | = | 2.2834 × 10 (1.48 × 10) |
CF8 | 5.9872 × 10 (5.33 × 10) − | 5.5194 × 10 (2.07 × 10) − | 3.6476 × 10 (9.91 × 10) − | 4.2228 × 10 (1.92 × 10) − | |
CF9 | 2.8537 × 10 (2.91 × 10) − | 3.5133 × 10 (2.49 × 10) − | 8.1477 × 10 (7.91 × 10) − | 1.1444 × 10 (5.31 × 10) − | |
CF10 | 7.3578 × 10 (2.58 × 10) − | 6.5082 × 10 (2.96 × 10) − | 4.5882 × 10 (2.12 × 10) − | 4.6881 × 10 (2.11 × 10) − | |
Best/All | 2/36 | 3/36 | 9/36 | 4/36 | 18/36 |
Total | 1+/27−/8= | 3+/28−/5= | 8+/26−/2= | 3+/24−/9= |
Problem | NSGA-IIconflict | rNSGA-II | RPDNSGA-II | NSGAII-SDR | NSGA-II-BnF |
---|---|---|---|---|---|
DTLZ1 | 3.7712 × 10 (1.04 × 10 ) = | + | 2.3851 (3.63 × 10) − | 2.4801 (4.61 × 10) − | 3.0587 (8.44 × 10) |
DTLZ2 | 3.3481 (1.09 × 10) − | 3.3078 (7.53 × 10) − | 2.1995 (3.63 × 10) − | 3.3468 (1.65 × 10) − | |
DTLZ3 | 1.0825 × 10 (5.93 × 10) − | = | 2.5622 (1.44 × 10) − | 3.2246 (6.09 × 10) = | 3.3368 (2.16 × 10) |
DTLZ4 | 3.3094 (2.13 × 10) − | 3.3078 (7.54 × 10) − | 2.2090 (9.61 × 10) − | 3.2694 (2.96 × 10) − | |
DTLZ5 | 3.3482 (9.79 × 10) − | 3.3078 (7.53 × 10) − | + | 3.3469 (1.46 × 10) − | 3.4809 (4.74 × 10) |
DTLZ6 | 3.3481 (1.03 × 10) − | 3.3078 (7.53 × 10) − | + | 3.3352 (1.15 × 10) − | 2.5854 (1.47 × 10) |
DTLZ7 | 1.8618 (1.62 × 10) − | 2.6916 (5.04 × 10) − | 1.6336 (1.11 × 10) − | 2.7185 (4.25 × 10) − | |
WFG1 | 3.2762 (8.87 × 10) − | 2.9736 (3.43 × 10) − | 2.5634 (6.28 × 10) − | 2.6369 (4.18 × 10) − | |
WFG2 | 3.4528 (1.47 × 10) − | 3.1700 (1.27 × 10) − | 2.2119 (1.96 × 10) − | 3.6294 (1.20 × 10) − | |
WFG3 | 3.3052 (1.89 × 10) − | 3.1709 (1.07 × 10) − | 2.3756 (5.82 × 10) − | 3.5813 (2.68 × 10) = | |
WFG4 | 2.6485 (8.73 × 10) − | 3.1732 (1.25 × 10) − | 2.2344 (2.66 × 10) − | 2.9319 (1.25 × 10) − | |
WFG5 | 2.5730 (1.13 × 10) − | 3.1056 (2.13 × 10) − | 2.1691 (3.93 × 10) − | 3.0671 (2.26 × 10) − | |
WFG6 | = | 3.0817 (2.68 × 10) − | 2.1335 (2.29 × 10) − | 2.6418 (2.04 × 10) − | 3.2575 (2.14 × 10) |
WFG7 | 2.6495 (4.66 × 10) − | 3.1735 (3.24 × 10) − | 2.1933 (8.03 × 10) − | 2.8441 (5.03 × 10) − | |
WFG8 | 2.5619 (4.72 × 10) − | 2.9074 (3.37 × 10) − | 2.0749 (3.12 × 10) − | = | 3.2116 (2.90 × 10) |
WFG9 | 2.6384 (2.97 × 10) − | 3.1379 (6.04 × 10) − | 2.2448 (7.91 × 10) − | 3.0247 (8.72 × 10) − | |
UF1 | 3.4232 (9.34 × 10) - | 3.1300 (7.20 × 10) - | 2.9551 (3.32 × 10) - | = | 3.5012 (7.38 × 10) |
UF2 | 3.5905 (4.85 × 10) - | 3.3841 (6.75 × 10) = | + | 3.3015 (3.89 × 10) - | 3.6764 (3.90 × 10) |
UF3 | 2.8036 (1.20 × 10) - | 1.0183 (1.06 × 10) - | 2.6401 (2.36 × 10) - | 2.9422 (1.34 × 10) - | |
UF4 | 3.3174 (4.71 × 10) - | 3.0821 (1.32 × 10) - | 2.0890 (3.45 × 10) - | 3.3040 (5.01 × 10) - | |
UF5 | 1.9536 (4.23 × 10) - | 2.0312 (5.01 × 10) - | 2.0308 (6.67 × 10) - | 2.4934 (5.21 × 10) - | |
UF6 | 2.4747 (2.66 × 10) - | 2.2823 (9.85 × 10) - | 2.5927 (5.71 × 10) - | 2.9404 (1.93 × 10) - | |
UF7 | 3.1689 (3.70 × 10) - | 1.2877 (1.34 × 10) - | 2.4342 (1.95 × 10) - | 3.4557 (1.93 × 10) = | |
UF8 | 6.3935 (5.01 × 10) - | 5.0769 (1.49 × 10) - | 4.0548 (4.14 × 10) - | + | 6.6545 (1.04 × 10) |
UF9 | 6.1791 (3.50 × 10) - | 5.2490 (6.84 × 10) - | 2.3559 (1.97 × 10) - | 6.4564 (2.45 × 10) = | |
UF10 | 4.3613 (1.23 × 10) - | 4.3784 (2.79 × 10) = | 4.0399 (1.13 × 10) - | = | 6.2468 (1.04 × 10) |
CF1 | 2.1443 (8.16 × 10) = | 1.4097 (1.25 × 10) = | + | 1.7864 (1.33 × 10) = | 1.7851 (1.04 × 10) |
CF2 | 3.5107 (8.95 × 10) = | 2.8016 (1.34 × 10) - | + | 3.4609 (7.78 × 10)= | 3.6345 (3.17 × 10) |
CF3 | 2.3274 (3.67 × 10) - | 2.0198 (1.27 × 10) = | = | 2.5891 (3.51 × 10) = | 2.5452 (3.44 × 10) |
CF4 | 2.6564 (2.31 × 10) = | 2.3161 (8.37 × 10) - | 2.6001 (2.72 × 10) = | = | 2.7146 (2.21 × 10) |
CF5 | 2.3162 (5.02 × 10) = | 1.7184 (1.15 × 10) = | + | 2.4368 (2.24 × 10) = | 2.4547 (2.18 × 10) |
CF6 | 3.2606 (1.18 × 10) = | 2.8129 (1.07 × 10) = | 2.8185 (1.89 × 10) − | 2.9056 (1.01 × 10) = | |
CF7 | 2.5986 (2.10 × 10) − | 2.2178 (1.02 × 10) − | 2.6330 (2.87 × 10) − | = | 2.7709 (2.78 × 10) |
CF8 | 4.8931 (9.42 × 10) − | 4.0300 (2.02 × 10) − | 3.4633 (1.43 × 10) − | 4.8983 (1.12 × 10) − | |
CF9 | 6.5983 (4.34 × 10) − | 5.9069 (1.81 × 10) − | 4.9510 (1.86 × 10) − | 6.6085 (3.22 × 10) − | |
CF10 | 4.5730 (1.00 × 10) − | 3.4969 (2.28 × 10) − | 2.6428 (1.87 × 10) − | + | 5.2637 (8.00 × 10) |
Best/All | 1/36 | 2/36 | 7/36 | 7/36 | 19/36 |
+/−/= | 0+/29−/7= | 1+/28−/7= | 6+/28−/2= | 2+/19−/15= |
Problem | SPEA-II | MOEA/D-DE | SMPSO | dMOPSO | NSGA-II-BnF |
---|---|---|---|---|---|
DTLZ1 | + | 2.0908 × 10 (7.35 × 10) + | 3.1412 × 10 (3.10 × 10) − | 2.6104 × 10 (2.82 × 10) − | 2.9848 × 10 (6.61 × 10) |
DTLZ2 | 3.1727 × 10 (1.15 × 10) − | 3.8207 × 10 (1.48 × 10) − | 2.5700 × 10 (7.18 × 10) − | 1.5720 × 10 (2.10 × 10) − | |
DTLZ3 | 4.3689 × 10 (1.84 × 10) = | 4.4424 × 10 (1.82 × 10) = | 2.7614 × 10 (2.22 × 10) − | 7.4083 × 10 (1.25 × 10) − | |
DTLZ4 | 5.2903 × 10 (1.87 × 10) − | + | 2.7214 × 10 (1.35 × 10) − | 3.5010 × 10 (1.17 × 10) − | 2.6736 × 10 (1.35 × 10) |
DTLZ5 | 3.1777 × 10 (1.15 × 10) − | 3.8175 × 10 (1.37 × 10) − | 2.5513 × 10 (7.08 × 10) − | 1.6313 × 10 (2.09 × 10) − | |
DTLZ6 | 3.5986 × 10 (1.40 × 10) − | 1.2863 × 10 (9.41 × 10) − | 2.6028 × 10 (6.46 × 10) − | + | 2.0435 × 10 (1.12 × 10) |
DTLZ7 | 3.3198 × 10 (1.24 × 10) − | 4.6229 × 10 (1.78 × 10) − | 1.0526 × 10 (1.89 × 10) − | 7.0221 × 10 (1.14 × 10) − | |
WFG1 | 1.1825 × 10 (4.31 × 10) = | 1.2013 × 10 (3.87 × 10) − | 3.0616 × 10 (5.19 × 10) − | 3.2701 × 10 (6.35 × 10) − | |
WFG2 | 1.3261 × 10 (4.67 × 10) − | 2.0696 × 10 (1.61 × 10) − | 1.2621 × 10 (3.35 × 10) − | 1.0709 × 10 (1.19 × 10) − | |
WFG3 | 1.5488 × 10 (6.28 × 10) − | 1.8273 × 10 (1.09 × 10) − | 9.1467 × 10 (4.38 × 10) − | 7.3244 × 10 (7.82 × 10) − | |
WFG4 | 1.5626 × 10 (4.72 × 10) − | 1.5094 × 10 (1.37 × 10) − | 4.3881 × 10 (1.08 × 10) − | 7.8283 × 10 (5.24 × 10) − | |
WFG5 | 6.5280 × 10 (3.21 × 10) − | 8.6818 × 10 (5.62 × 10) − | 6.4034 × 10 (9.35 × 10) − | 6.7354 × 10 (1.90 × 10) − | |
WFG6 | 8.3295 × 10 (1.83 × 10) = | 8.3809 × 10 (1.86 × 10) = | + | 7.3127 × 10 (7.65 × 10) = | 5.7762 × 10 (2.04 × 10) |
WFG7 | 1.7341 × 10 (6.75 × 10) − | 1.7456 × 10 (1.10 × 10) − | 8.6719 × 10 (3.25 × 10) − | 9.2887 × 10 (1.23 × 10) − | |
WFG8 | 3.1152 × 10 (1.37 × 10) − | 1.1629 × 10 (3.10 × 10) − | + | 2.2204 × 10 (1.26 × 10) − | 1.0804 × 10 (1.23 × 10) |
WFG9 | 2.1794 × 10 (2.47 × 10) − | 2.6441 × 10 (2.91 × 10) − | 1.9328 × 10 (2.81 × 10) − | 3.9316 × 10 (2.69 × 10) − | |
UF1 | 1.1636 × 10 (3.39 × 10) − | 1.0707 × 10 (2.68 × 10) − | 1.1435 × 10 (2.14 × 10) − | 2.9113 × 10 (6.49 × 10) − | |
UF2 | = | 4.2089 × 10 (5.95 × 10) − | 4.9176 × 10 (5.64 × 10) − | 7.2812 × 10 (6.72 × 10) − | 3.5607 × 10 (9.04 × 10) |
UF3 | 2.2298 × 10 (5.15 × 10) − | 2.6533 × 10 (3.64 × 10) − | 2.2174 × 10 (7.07 × 10) − | 3.1025 × 10 (9.37 × 10) − | |
UF4 | 5.6202 × 10 (2.43 × 10) − | 5.9946 × 10 (3.46 × 10) − | 8.6831 × 10 (1.01 × 10) − | 1.0842 × 10 (6.43 × 10) − | |
UF5 | 3.9452 × 10 (1.02 × 10) − | 3.7018 × 10 (1.10 × 10) − | 1.7499 × 10 (6.55 × 10) − | 3.9838 × 10 (3.23 × 10) − | |
UF6 | 1.8429 × 10 (9.62 × 10) − | 2.2601 × 10 (1.37 × 10) − | 4.3435 × 10 (1.04 × 10) − | 1.1734 × 10 (2.50 × 10) − | |
UF7 | 1.5346 × 10 (1.33 × 10) − | 1.7477 × 10 (1.50 × 10) − | 1.3599 × 10 (1.36 × 10) − | 2.6362 × 10 (5.64 × 10) − | |
UF8 | 2.8042 × 10 (2.43 × 10) − | 2.6298 × 10 (3.34 × 10) − | 3.2839 × 10 (3.65 × 10) − | 3.0297 × 10 (3.50 × 10) − | |
UF9 | 3.8984 × 10 (1.10 × 10) − | 3.7162 × 10 (6.29 × 10) − | 5.1409 × 10 (5.42 × 10) − | 5.7529 × 10 (4.12 × 10) − | |
UF10 | 4.1234 × 10 (1.23 × 10) = | 3.7774 × 10 (1.38 × 10) = | 5.9138 × 10 (4.54 × 10) − | 8.9974 × 10 (1.68 × 10) − | |
CF1 | + | 6.4683 × 10 (4.28 × 10) = | 6.6559 × 10 (1.27 × 10) = | 3.7872 × 10 (8.98 × 10) + | 4.4362 × 10 (1.40 × 10) |
CF2 | 5.4379 × 10 (1.64 × 10) = | 5.0678 × 10 (1.56 × 10) = | 5.6506 × 10 (1.43 × 10) = | 9.5738 × 10 (1.52 × 10) − | |
CF3 | + | 7.5678 × 10 (1.59 × 10) − | 6.2263 × 10 (1.75 × 10) − | 9.0378 × 10 (1.56 × 10) − | 2.9505 × 10 (8.98 × 10) |
CF4 | + | 6.1865 × 10 (8.50 × 10) − | 1.9973 × 10 (7.84 × 10) + | 1.9199 × 10 (3.08 × 10) + | 2.6903 × 10 (1.29 × 10) |
CF5 | + | 3.0706 × 10 (1.07 × 10) + | 5.6748 × 10 (4.01 × 10) = | 6.1185 × 10 (4.80 × 10) − | 2.5713 × 10 (1.06 × 10) |
CF6 | + | 3.4417 × 10 (3.12 × 10) − | 1.4726 × 10 (2.36 × 10) = | 1.1346 × 10 (2.92 × 10) + | 1.6294 × 10 (4.72 × 10) |
CF7 | 2.5882 × 10 (1.20 × 10) − | 3.1910 × 10 (1.35 × 10) − | 1.1566 × 10 (1.65 × 10) − | 1.0868 × 10 (3.73 × 10) − | |
CF8 | 4.4212 × 10 (1.16 × 10) − | 3.5190 × 10 (1.35 × 10) − | 7.7144 × 10 (3.43 × 10) − | + | 3.1883 × 10 (1.86 × 10) |
CF9 | 1.2748 × 10 (4.72 × 10) − | 1.1157 × 10 (4.22 × 10) − | 1.8030 × 10 (5.46 × 10) − | 1.2731 × 10 (1.85 × 10) − | |
CF10 | 5.3578 × 10 (3.03 × 10) − | 2.7349 × 10 (1.44 × 10) = | 1.1643 (9.76 × 10) − | + | 3.0384 × 10 (9.50 × 10) |
Best/All | 7/36 | 1/36 | 2/36 | 3/36 | 23/36 |
+/−/= | 6+/24−/6= | 3+/27−/6= | 3+/29−/4= | 6+/29−/1= |
Problem | SPEA2 | MOEA/D-DE | SMPSO | dMOPSO | NSGA-II-BnF |
---|---|---|---|---|---|
DTLZ1 | + | 3.0727 (1.09 × 10) = | 3.1129 (1.08 × 10) = | 3.2652 (9.32 × 10) = | 3.0587 (8.44 × 10) |
DTLZ2 | 3.3482 (9.72 × 10) − | 3.3490 (1.06 × 10) − | 3.3485 (8.73 × 10) − | 3.3253 (1.26 × 10) − | |
DTLZ3 | 3.0257 (6.09 × 10) = | = | 2.0337 (1.54 × 10) − | 2.5231 (5.88 × 10) − | 3.3368 (2.16 × 10) |
DTLZ4 | 3.1482 (2.55 × 10) − | + | 3.3096 (2.13 × 10) − | 3.3158 (1.16 × 10) + | 3.3102 (2.13 × 10) |
DTLZ5 | 3.3481 (1.04 × 10) − | 2.3490 (1.37 × 10) − | 3.3485 (8.56 × 10) − | 3.0279 (3.21 × 10) − | |
DTLZ6 | 3.3480 (1.09 × 10) − | 3.3491 (2.77 × 10) − | 3.3488 (7.50 × 10) − | + | 2.5854 (1.47 × 10) |
DTLZ7 | 2.7188 (2.78 × 10) − | 2.5993 (1.70 × 10) − | 2.6361 (1.53 × 10) − | 2.7112 (2.53 × 10) − | |
WFG1 | 3.6415 (4.83 × 10) = | 2.7581 (1.03 × 10) − | 2.2215 (4.60 × 10) − | 2.2623 (2.10 × 10) − | |
WFG2 | 3.6308 (1.15 × 10) − | 3.6295 (1.19 × 10) − | 3.6261 (3.20 × 10) − | 3.4867 (1.93 × 10) − | |
WFG3 | 3.5778 (1.09 × 10) − | 3.5805 (4.52 × 10) − | 3.5803 (7.52 × 10) − | 3.4308 (3.36 × 10) − | |
WFG4 | 3.3450 (5.96 × 10) − | 3.3074 (6.73 × 10) − | 3.2978 (1.13 × 10) − | 3.2679 (6.24 × 10) − | |
WFG5 | + | 3.2248 (2.78 × 10) − | 3.2658 (1.51 × 10) − | 3.2468 (2.03 × 10) − | 3.2770 (9.93 × 10) |
WFG6 | 3.2585 (2.06 × 10) = | 3.1033 (9.09 × 10) − | + | 3.2139 (9.94 × 10) − | 3.2575 (2.14 × 10) |
WFG7 | 3.3448 (3.82 × 10) − | 3.3470 (3.11 × 10) − | 3.3468 (2.68 × 10) − | 3.1922 (3.16 × 10) − | |
WFG8 | 3.2150 (2.30 × 10) − | + | 3.2218 (4.27 × 10) + | 2.8981 (5.36 × 10) − | 3.2116 (2.90 × 10) |
WFG9 | 3.3311 (6.00 × 10) = | 3.2697 (2.29 × 10) − | 3.3000 (2.44 × 10) − | 3.2849 (1.82 × 10) − | |
UF1 | 3.3903 (1.41 × 10) − | 3.2764 (3.90 × 10) − | 3.3445 (1.08 × 10) − | 2.8252 (2.07 × 10) − | |
UF2 | 3.5968 (5.54 × 10) = | 3.2189 (2.06 × 10) − | 3.5392 (3.23 × 10) − | 3.4756 (3.68 × 10) − | |
UF3 | 2.8121 (1.10 × 10) − | 3.0402 (1.24 × 10) − | 3.0100 (1.64 × 10) − | 3.3349 (1.02 × 10) + | |
UF4 | 3.3183 (4.24 × 10) − | 3.2459 (2.36 × 10) − | 3.2028 (4.55 × 10) − | 3.1858 (2.07 × 10) − | |
UF5 | 2.0578 (3.40 × 10) − | 1.1930 (8.16 × 10) − | 2.1133 (3.21 × 10) − | 2.3265 (2.43 × 10) − | |
UF6 | 2.7684 (2.71 × 10) − | 2.9268 (3.54 × 10) − | 2.1249 (3.17 × 10) − | 3.1916 (2.13 × 10) − | |
UF7 | 3.1810 (3.91 × 10) − | 3.2511 (2.12 × 10) − | 3.0870 (3.91 × 10) − | 2.7365 (2.25 × 10) − | |
UF8 | 6.5547 (8.22 × 10) − | 6.6528 (2.77 × 10) = | 5.9756 (3.86 × 10) − | 6.5491 (6.34 × 10) − | |
UF9 | 6.0581 (5.52 × 10) − | 6.4544 (4.23 × 10) − | 5.1765 (3.21 × 10) − | 5.0115 (1.92 × 10) − | |
UF10 | 5.1681 (1.41 × 10) − | 5.1526 (9.76 × 10) − | 5.1054 (2.80 × 10) − | 4.5182 (5.86 × 10) − | |
CF1 | + | 2.1818 (1.36 × 10) + | 2.2456 (1.95 × 10) = | 2.4491 (1.96 × 10) + | 1.7851 (1.04 × 10) |
CF2 | 3.5280 (7.81 × 10) = | 3.2719 (4.03 × 10) − | 3.1092 (3.35 × 10) − | 3.4295 (3.67 × 10) − | |
CF3 | 2.6580 (2.52 × 10) = | = | 1.0257 (7.72 × 10) − | 2.1491 (1.89 × 10) − | 2.5452 (3.44 × 10) |
CF4 | + | 2.8807 (1.65 × 10) + | 2.7404 (2.46 × 10) = | 2.9011 (1.75 × 10) + | 2.7146 (2.21 × 10) |
CF5 | + | 2.2569 (2.11 × 10) − | 1.5678 (1.03 × 10) − | 2.2399 (2.23 × 10) − | 2.4547 (2.18 × 10) |
CF6 | + | 3.4019 (3.01 × 10) + | 3.3404 (4.66 × 10) = | 3.3584 (1.03 × 10) = | 3.3364 (8.51 × 10) |
CF7 | + | 2.8942 (2.90 × 10) = | 1.4887 (1.14 × 10) − | 2.0779 (8.00 × 10) − | 2.7709 (2.78 × 10) |
CF8 | 5.0308 (9.30 × 10) − | 5.1941 (7.03 × 10) − | 2.2787 (1.76 × 10) − | = | 5.4100 (1.33 × 10) |
CF9 | 6.9940 (4.21 × 10) − | 7.0896 (1.12 × 10) − | 6.3356 (6.19 × 10) − | 6.7369 (2.74 × 10) − | |
CF10 | 4.5674 (1.34 × 10) − | 5.3088 (8.87 × 10) = | 4.1674 (1.34 × 10) − | + | 5.2637 (8.00 × 10) |
Best/All | 7/36 | 4/36 | 1/36 | 3/36 | 21/36 |
Total | 6+/23−/7= | 5+/24−/6= | 2+/30−/4= | 6+/27−/3= |
IGD Values | HV Values | |||
---|---|---|---|---|
Problem | NSGA-II | NSGA-II-BnF | NSGA-II | NSGA-II-BnF |
DTLZ1 | 3.2133 × 10 (3.86 × 10) − | = | 3.0587 (8.44 × 10) | |
DTLZ2 | 2.4654 × 10 (6.54 × 10) − | 3.7455 (8.73 × 10) − | ||
DTLZ3 | 3.9239 × 10 (1.79 × 10) = | 2.9587 (1.54 × 10) − | ||
DTLZ4 | + | 2.6736 × 10 (1.35 × 10) | + | 3.3102 (2.13 × 10) |
DTLZ5 | 3.0684 × 10 (1.53 × 10) − | 3.1995 (8.56 × 10) − | ||
DTLZ6 | 2.5132 × 10 (5.45 × 10) − | + | 2.5854 (1.47 × 10) | |
DTLZ7 | 2.7656 × 10 (1.04 × 10) − | 2.6361 (1.53 × 10) − | ||
WFG1 | 1.1681 × 10 (3.68 × 10) = | 3.3215 (9.60 × 10) = | ||
WFG2 | + | 5.7147 × 10 (2.12 × 10) | 3.6261 (3.20 × 10) = | |
WFG3 | 7.3975 × 10 (3.89 × 10) − | 3.3843 (7.52 × 10) − | ||
WFG4 | 7.1386 × 10 (2.90 × 10) − | 3.1745 (1.13 × 10) − | ||
WFG5 | + | 6.2467 × 10 (5.89 × 10) | + | 3.2770 (9.93 × 10) |
WFG6 | 7.0127 × 10 (5.91 × 10) = | + | 3.2575 (2.14 × 10) | |
WFG7 | 7.2569 × 10 (1.69 × 10) − | 3.3431 (2.68 × 10) − | ||
WFG8 | 1.1429 × 10 (2.10 × 10) − | 3.1295 (4.27 × 10) − | ||
WFG9 | 1.7693 × 10 (2.91 × 10) − | 3.2381 (2.44 × 10) − | ||
UF1 | 1.0707 × 10 (1.08 × 10) = | 3.2445 (1.08 × 10) = | ||
UF2 | = | 3.5607 × 10 (9.04 × 10) | 3.3352 (7.23 × 10) = | |
UF3 | 2.0174 × 10 (5.07 × 10) − | 2.3658 (1.64 × 10) − | ||
UF4 | 5.2691 × 10 (2.01 × 10) − | 3.1755 (4.55 × 10) − | ||
UF5 | 3.0018 × 10 (5.90 × 10) − | 2.3644 (3.21 × 10) − | ||
UF6 | 1.6037 × 10 (3.32 × 10) = | 3.1465 (3.17 × 10) − | ||
UF7 | 6.9755 × 10 (1.34 × 10) − | 3.0990 (3.91 × 10) − | ||
UF8 | 2.9298 × 10 (2.94 × 10) − | 5.9756 (3.86 × 10) − | ||
UF9 | = | 2.4376 × 10 (9.82 × 10) | 6.1765 (3.21 × 10) = | |
UF10 | 4.0234 × 10 (1.60 × 10) = | 5.1054 (2.80 × 10) − | ||
CF1 | 4.7559 × 10 (2.39 × 10) = | + | 1.7851 (1.04 × 10) | |
CF2 | = | 5.2831 × 10 (2.41 × 10) | = | 3.6345 (3.17 × 10) |
CF3 | = | 2.9505 × 10 (8.98 × 10) | 2.0635 (1.72 × 10) − | |
CF4 | 3.1391 × 10 (1.18 × 10) = | = | 2.7146 (2.21 × 10) | |
CF5 | 3.8348 × 10 (3.31 × 10) = | 2.3562 (1.03 × 10) = | ||
CF6 | 1.7726 × 10 (2.25 × 10) = | = | 3.3364 (8.51 × 10) | |
CF7 | 3.7845 × 10 (1.52 × 10) = | 2.3758 (1.14 × 10) = | ||
CF8 | 3.4990 × 10 (1.25 × 10) − | 4.2956 (1.76 × 10) − | ||
CF9 | 1.0561 × 10 (1.42 × 10) − | 5.4676 (6.19 × 10) − | ||
CF10 | + | 3.0384 × 10 (9.50 × 10) | 4.7674 (1.34 × 10) = | |
Best/All | 8/36 | 28/36 | 9/36 | 27/36 |
Total | 4+/17−/15= | / | 5+/19−/12= | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Geng, Y.; Zhao, J.; Zhang, K.; Liu, J. Elite Exploitation: A Combination of Mathematical Concept and EMO Approach for Multi-Objective Decision Making. Symmetry 2021, 13, 136. https://doi.org/10.3390/sym13010136
Li W, Geng Y, Zhao J, Zhang K, Liu J. Elite Exploitation: A Combination of Mathematical Concept and EMO Approach for Multi-Objective Decision Making. Symmetry. 2021; 13(1):136. https://doi.org/10.3390/sym13010136
Chicago/Turabian StyleLi, Wenxiao, Yushui Geng, Jing Zhao, Kang Zhang, and Jianxin Liu. 2021. "Elite Exploitation: A Combination of Mathematical Concept and EMO Approach for Multi-Objective Decision Making" Symmetry 13, no. 1: 136. https://doi.org/10.3390/sym13010136
APA StyleLi, W., Geng, Y., Zhao, J., Zhang, K., & Liu, J. (2021). Elite Exploitation: A Combination of Mathematical Concept and EMO Approach for Multi-Objective Decision Making. Symmetry, 13(1), 136. https://doi.org/10.3390/sym13010136