It Is Not Just in the Genes
Abstract
:1. The Functional Organization of Brain Asymmetries and Its Development
“A number of embryonic events make up an integrated overture to the post-hatching expression of lateralization”Lesley Rogers [1]
1.1. Lateralization Patterns of Neuronal Systems across the Animal Kingdom
1.2. Understanding Ontogeny of Neuronal Asymmetries—An Unfinished Business
1.3. Structural Foundations of Functional Asymmetries
2. Potential Roles of Genetic Factors for Asymmetry Formation
- Specific genes can account for left–right differences in the amount of neuronal substrate. An asymmetrical number of neuronal and/or glial precursor cells can result in gross morphological asymmetries and can be related to differences in cellular identity or cell-type-specific proteins.
- Specific genes can control left–right differences in developmental dynamics. Differences in the maturation of left- or right-hemispheric neurons or networks could lead to asymmetries in the susceptibility to epigenetic factors like hormones, sensory input or motor activity.
- Specific genes can regulate asymmetrical morphogenetic events leading to asymmetric body positions or craniofacial asymmetries, which bias sensory experiences.
- Specific genes can control asymmetrical differentiation of neuronal elements like growth or arborization of axons and dendrites or development of synapses.
- Specific genes involved in synaptogenesis or signal transmission can lead to left–right differences in the degree of neuronal plasticity.
2.1. Embryonic Patterning
2.2. Regionalization of Neuronal Substrate
2.3. Differential Developmental Dynamics
2.4. Differentiation of Hemisphere-Specific Neuronal Elements
2.5. Ontogenetic Plasticity
3. The Avian Visual System as a Model for Ontogenetic Plasticity
3.1. Mechanisms during Embryonic Patterning (Phase I)
- Differences in left–right identity presumably determine asymmetries in the developing nervous system, which result in functional lateralizations when no other factors modify these predetermined ones. Early asymmetrical differentiation is indicated by a rightward torsion of the neuronal tube. Some evidence suggests that bending is caused by differential growth of the left and right neuronal tube side but physical mechanisms in relation to asymmetrical heart bending might also play a role [154]. This bending also occurs in mammalian embryos [155] and could contribute to the emergence of the cortical torque in the human brain. Presumably dependent on these early asymmetrical developmental processes, some visual lateralization develops independent from asymmetrical light stimulation. In chicks, visual choice to approach a social partner [156,157], uni-hemispheric sleep [158] or structural asymmetries of forebrain areas [159,160,161,162] are present in birds that are not exposed to biased visual stimulation. Interocular transfer of conditioned information [163] or lateralized visuospatial attention [164] emerge without embryonic light stimulation in pigeons but, interestingly, not in chicks [165,166]. It is currently unknown which genetic factors and which neuronal processes control the emergence of these visual asymmetries. However, endogenous asymmetries can be modulated by later visual experience [159,163,164,167].
- As a consequence of the primarily Nodal-dependent left–right determination of the body, morphogenetic processes lead to bending of the head region, which turns to the left so that the beak points to the right and the right side of the head is facing the egg [168]. Due to the fact that the size of the embryo during the last embryonic phase does not allow free head rotations anymore, the left eye arrests on the body while the right eye is close to the egg shell and can be stimulated by light shining through the egg shell (Figure 2). This biased environmental stimulation triggers the second step in asymmetry formation, inducing asymmetrical differentiation processes, which involve neuronal mechanisms well known for ontogenetic plasticity [59,60,152] (see phase II). Such a rightward torsion occurs in all amniotes [168] including human embryos, which display a right-turn of their head during the last gestational phase from week 38 onwards [169]. During this time, human fetuses are already responsive to sensory stimulation. They are able to memorize auditory stimuli from the external world by the last trimester of pregnancy, with a particular sensitivity to melody contour in both music and language [170,171]. Differential auditory input to the left and right ear because of postural asymmetries, therefore, might affect the development of language lateralizations [172,173,174].
- Although visual systems are not developed, there is some evidence that during this phase, light stimulation already affects the establishment of some aspects of lateralization in both chickens and zebrafish [166,175,176,177] (Figure 2). Transduction mechanisms mediating these light effects are unknown but might include epigenetic mechanisms [166,177]. It is also possible that some genes unfold their actions only after photostimulation [178].
3.2. Mechanisms during Neuronal Differentiation (Phase II)
3.3. Consolidation of Functional Asymmetries (Phase III)
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, L.J. Factors Influencing Development of Lateralization. Cortex 2006, 42, 107–109. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of Lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef]
- Niven, J.E.; Frasnelli, E. Insights into the evolution of lateralization from the insects. Prog. Brain Res. 2018, 238, 3–31. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; University Press: Cambridge, UK, 2013. [Google Scholar]
- Vallortigara, G.; Rogers, L.J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 2005, 28, 575–589. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J. A function for the bicameral mind. Cortex 2020, 124, 274–285. [Google Scholar] [CrossRef]
- Vallortigara, G.; Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and Behavior; American Psychological Association: Washington, DC, USA, 2017; Volume 1, pp. 557–577. [Google Scholar] [CrossRef]
- Heger, P.; Zheng, W.; Rottmann, A.; Panfilio, K.A.; Wiehe, T. The genetic factors of bilaterian evolution. eLife 2020, 9. [Google Scholar] [CrossRef]
- Manns, M. Hemispheric Specialization. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 1–10. [Google Scholar]
- Manns, M.; El Basbasse, Y.; Freund, N.; Ocklenburg, S. Paw preferences in mice and rats: Meta-analysis. Neurosci. Biobehav. Rev. 2021, 127, 593–606. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G. Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin. Symmetry 2018, 10, 739. [Google Scholar] [CrossRef]
- Rogers, L.J. Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis 2014, 52, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, G.; Joss, J.; Rogers, L. Australian Lungfish (Neoceratodus forsteri): A Missing Link in the Evolution of Complementary Side Biases for Predator Avoidance and Prey Capture. Brain Behav. Evol. 2009, 73, 295–303. [Google Scholar] [CrossRef] [PubMed]
- MacNeilage, P.F.; Rogers, L.J.; Vallortigara, G. Origins of the Left & Right Brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Vallortigara, G. Comparative Neuropsychology of the Dual Brain: A Stroll through Animals’ Left and Right Perceptual Worlds. Brain Lang. 2000, 73, 189–219. [Google Scholar] [CrossRef]
- Rogers, L.J.; Andrew, R. Comparative Vertebrate Lateralization; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Salva, O.R.; Regolin, L.; Mascalzoni, E.; Vallortigara, G. Cerebral and Behavioural Asymmetries in Animal Social Recognition. Comp. Cogn. Behav. Rev. 2012, 7, 110–138. [Google Scholar] [CrossRef] [Green Version]
- Gainotti, G. Laterality effects in normal subjects’ recognition of familiar faces, voices and names. Perceptual and representational components. Neuropsychologia 2013, 51, 1151–1160. [Google Scholar] [CrossRef]
- Kendrick, K.M. Brain asymmetries for face recognition and emotion control in sheep. Cortex 2006, 42, 96–98. [Google Scholar] [CrossRef]
- Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. Behavioural lateralization in sheep (Ovis aries). Behav. Brain Res. 2007, 184, 72–80. [Google Scholar] [CrossRef]
- Daisley, J.N.; Mascalzoni, E.; Salva, O.R.; Rugani, R.; Regolin, L. Lateralization of social cognition in the domestic chicken (Gallus gallus). Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Ocklenburg, S.; Beste, C.; Arning, L.; Peterburs, J.; Güntürkün, O. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 2014, 43, 191–198. [Google Scholar] [CrossRef]
- Levy, R.B.; Marquarding, T.; Reid, A.P.; Pun, C.M.; Renier, N.; Oviedo, H.V. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat. Commun. 2019, 10, 2783. [Google Scholar] [CrossRef] [Green Version]
- Ocklenburg, S.; Ströckens, F.; Güntürkün, O. Lateralisation of conspecific vocalisation in non-human vertebrates. Laterality 2013, 18, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.T.A.; Niven, J.E. Individual-level, context-dependent handedness in the desert locust. Curr. Biol. 2014, 24, R382–R383. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.T.A.; Niven, J.E. Strength of forelimb lateralization predicts motor errors in an insect. Biol. Lett. 2016, 12, 20160547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, R.A.; Kuba, M.J.; Meisel, D.V.; Griebel, U.; Mather, J.A. Does Octopus vulgaris have preferred arms? J. Comp. Psychol. 2006, 120, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Ströckens, F.; Güntürkün, O.; Ocklenburg, S. Limb preferences in non-human vertebrates. Laterality 2013, 18, 536–575. [Google Scholar] [CrossRef] [PubMed]
- Versace, E.; Vallortigara, G. Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Front. Psychol. 2015, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Papadatou-Pastou, M.; Ntolka, E.; Schmitz, J.; Martin, M.; Munafò, M.R.; Ocklenburg, S.; Paracchini, S. Human handedness: A meta-analysis. Psychol. Bull. 2020, 146, 481–524. [Google Scholar] [CrossRef]
- Packheiser, J.; Schmitz, J.; Berretz, G.; Carey, D.P.; Paracchini, S.; Papadatou-Pastou, M.; Ocklenburg, S. Four meta-analyses across 164 studies on atypical footedness prevalence and its relation to handedness. Sci. Rep. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Packheiser, J.; Schmitz, J.; Berretz, G.; Papadatou-Pastou, M.; Ocklenburg, S. Handedness and sex effects on lateral biases in human cradling: Three meta-analyses. Neurosci. Biobehav. Rev. 2019, 104, 30–42. [Google Scholar] [CrossRef]
- Grimshaw, G.M.; Ecarmel, D. An asymmetric inhibition model of hemispheric differences in emotional processing. Front. Psychol. 2014, 5, 489. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Beste, C.; Güntürkün, O. Handedness: A neurogenetic shift of perspective. Neurosci. Biobehav. Rev. 2013, 37, 2788–2793. [Google Scholar] [CrossRef]
- Schmitz, J.; Metz, G.A.; Güntürkün, O.; Ocklenburg, S. Beyond the genome—Towards an epigenetic understanding of handedness ontogenesis. Prog. Neurobiol. 2017, 159, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Brandler, W.M.; Morris, A.P.; Evans, D.M.; Scerri, T.S.; Kemp, J.P.; Timpson, N.J.; Pourcain, B.S.; Smith, G.D.; Ring, S.M.; Stein, J.; et al. Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill. PLoS Genet. 2013, 9, e1003751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laland, K.N. Exploring gene–culture interactions: Insights from handedness, sexual selection and niche-construction case studies. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3577–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J.; Vallortigara, G. When and Why Did Brains Break Symmetry? Symmetry 2015, 7, 2181–2194. [Google Scholar] [CrossRef] [Green Version]
- Ocklenburg, S.; Berretz, G.; Packheiser, J.; Friedrich, P. Laterality 2020: Entering the next decade. Laterality 2021, 26, 265–297. [Google Scholar] [CrossRef]
- Concha, M.L.; Bianco, I.; Wilson, S. Encoding asymmetry within neural circuits. Nat. Rev. Neurosci. 2012, 13, 832–843. [Google Scholar] [CrossRef]
- Hobert, O.; Johnston, R.J.; Chang, S. Left–right asymmetry in the nervous system: The Caenorhabditis elegans model. Nat. Rev. Neurosci. 2002, 3, 629–640. [Google Scholar] [CrossRef]
- Hobert, O. Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron. Genesis 2014, 52, 528–543. [Google Scholar] [CrossRef]
- Concha, M.L.; Signore, I.A.; Colombo, A. Mechanisms of directional asymmetry in the zebrafish epithalamus. Semin. Cell Dev. Biol. 2009, 20, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Roberson, S.; Halpern, M.E. Development and connectivity of the habenular nuclei. Semin. Cell Dev. Biol. 2018, 78, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.; Boiti, A.; Vallortigara, G. Asymmetric distribution of pallial-expressed genes in zebrafish (Danio rerio). Eur. J. Neurosci. 2021, 53, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Annett, M. Handedness and Cerebral Dominance. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 459–469. [Google Scholar] [CrossRef]
- McManus, I.C. Handedness, language dominance and aphasia: A genetic model. Psychol. Med. Monogr. Suppl. 1985, 8, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Packheiser, J.; Schmitz, J.; Arning, L.; Beste, C.; Güntürkün, O.; Ocklenburg, S. A large-scale estimate on the relationship between language and motor lateralization. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Sha, Z.; Schijven, D.; Carrion-Castillo, A.; Joliot, M.; Mazoyer, B.; Fisher, S.E.; Crivello, F.; Francks, C. The genetic architecture of structural left–right asymmetry of the human brain. Nat. Hum. Behav. 2021, 1–14. [Google Scholar] [CrossRef]
- Cuellar-Partida, G.; Tung, J.Y.; Eriksson, N.; Albrecht, E.; Aliev, F.; Andreassen, O.A.; Barroso, I.; Beckmann, J.S.; Boks, M.P.; Boomsma, D.I.; et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat. Hum. Behav. 2021, 5, 59–70. [Google Scholar] [CrossRef]
- De Kovel, C.G.F.; Carrión-Castillo, A.; Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Kovel, C.G.F.; Francks, C. The molecular genetics of hand preference revisited. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- McManus, C. Half a century of handedness research: Myths, truths; fictions, facts; backwards, but mostly forwards. Brain Neurosci. Adv. 2019, 3, 2398212818820513. [Google Scholar] [CrossRef] [Green Version]
- McManus, I.C.; Davison, A.; Armour, J. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann. N. Y. Acad. Sci. 2013, 1288, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medland, S.E.; Duffy, D.L.; Wright, M.; Geffen, G.M.; Hay, D.A.; Levy, F.; Van-Beijsterveldt, C.E.; Willemsen, G.; Townsend, G.C.; White, V.; et al. Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychology 2009, 47, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.J.; Fine, I. New insights into cortical development and plasticity: From molecules to behavior. Curr. Opin. Physiol. 2020, 16, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Manns, M. The Embryonic Development of Visual Asymmetry in the Pigeon. In The Two Halves of the Brain; Hugdahl, K., Westerhausen, R., Eds.; The MIT Press: Cambridge, MA, USA, 2010; pp. 121–142. [Google Scholar]
- Manns, M.; Güntürkün, O. Dual coding of visual asymmetries in the pigeon brain: The interaction of bottom-up and top-down systems. Exp. Brain Res. 2009, 199, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Ströckens, F. Functional and structural comparison of visual lateralization in birds-similar but still different. Front. Psychol. 2014, 5, 206. [Google Scholar] [CrossRef] [Green Version]
- Ocklenburg, S.; Güntürkün, O. Hemispheric Asymmetries: The Comparative View. Front. Psychol. 2012, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, J.; Güntürkün, O.; Ocklenburg, S. Building an Asymmetrical Brain: The Molecular Perspective. Front. Psychol. 2019, 10, 982. [Google Scholar] [CrossRef] [Green Version]
- Miao, N.; Lai, X.; Zeng, Z.; Cai, W.; Chen, W.; Sun, T. Differential expression of microRNAs in the human fetal left and right cerebral cortex. Mol. Biol. Rep. 2020, 47, 6573–6586. [Google Scholar] [CrossRef]
- Richards, G.; Beking, T.; Kreukels, B.P.; Geuze, R.H.; Beaton, A.A.; Groothuis, T. An examination of the influence of prenatal sex hormones on handedness: Literature review and amniotic fluid data. Horm. Behav. 2021, 129, 104929. [Google Scholar] [CrossRef]
- Berretz, G.; Wolf, O.T.; Güntürkün, O.; Ocklenburg, S. Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress? Cortex 2020, 125, 215–232. [Google Scholar] [CrossRef]
- McManus, C. Is any but a tiny fraction of handedness variance likely to be due to the external environment? Laterality 2021, 26, 310–314. [Google Scholar] [CrossRef]
- Kong, X.-Z.; Postema, M.; Schijven, D.; Castillo, A.C.; Pepe, A.; Crivello, F.; Joliot, M.; Mazoyer, B.; Fisher, S.E.; Francks, C. Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cereb. Cortex 2021, 31, 4151–4168. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Crow, T.; Roberts, N. Cerebral torque is human specific and unrelated to brain size. Brain Struct. Funct. 2019, 224, 1141–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.-Z.; Mathias, S.R.; Guadalupe, T.; Glahn, D.C.; Franke, B.; Crivello, F.; Tzourio-Mazoyer, N.; Fisher, S.E.; Thompson, P.M.; Francks, C.; et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc. Natl. Acad. Sci. USA 2018, 115, E5154–E5163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadalupe, T.; Zwiers, M.P.; Teumer, A.; Wittfeld, K.; Vasquez, A.A.; Hoogman, M.; Hagoort, P.; Fernandez, G.; Buitelaar, J.; Hegenscheid, K.; et al. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum. Brain Mapp. 2014, 35, 3277–3289. [Google Scholar] [CrossRef] [Green Version]
- Maingault, S.; Tzourio-Mazoyer, N.; Mazoyer, B.; Crivello, F. Regional correlations between cortical thickness and surface area asymmetries: A surface-based morphometry study of 250 adults. Neuropsychology 2016, 93, 350–364. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Friedrich, P.; Güntürkün, O.; Genç, E. Intrahemispheric white matter asymmetries: The missing link between brain structure and functional lateralization? Rev. Neurosci. 2016, 27, 465–480. [Google Scholar] [CrossRef]
- De Schotten, M.T.; Dell’Acqua, F.; Forkel, S.; Simmons, A.; Vergani, F.; Murphy, D.; Catani, M. A lateralized brain network for visuospatial attention. Nat. Neurosci. 2011, 14, 1245–1246. [Google Scholar] [CrossRef]
- Chance, S.A. The cortical microstructural basis of lateralized cognition: A review. Front. Psychol. 2014, 5, 820. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, J.; Fraenz, C.; Schlüter, C.; Friedrich, P.; Jung, R.E.; Güntürkün, O.; Genç, E.; Ocklenburg, S. Hemispheric asymmetries in cortical gray matter microstructure identified by neurite orientation dispersion and density imaging. NeuroImage 2019, 189, 667–675. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Li, G.; Wang, J.; Sherwood, C.; Gong, G.; Fan, L.; Jiang, T. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. eLife 2021, 10, e67600. [Google Scholar] [CrossRef] [PubMed]
- Graïc, J.-M.; Peruffo, A.; Corain, L.; Centelleghe, C.; Granato, A.; Zanellato, E.; Cozzi, B. Asymmetry in the Cytoarchitecture of the Area 44 Homolog of the Brain of the Chimpanzee Pan troglodytes. Front. Neuroanat. 2020, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Spocter, M.A.; Sherwood, C.C.; Schapiro, S.J.; Hopkins, W.D. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees Pan troglodytes. Proc. R. Soc. B Boil. Sci. 2020, 287, 20201320. [Google Scholar] [CrossRef] [PubMed]
- Galuske, R.A.W.; Schlote, W.; Bratzke, H.; Singer, W. Interhemispheric Asymmetries of the Modular Structure in Human Temporal Cortex. Science 2000, 289, 1946–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, G.; Yang, X.; Yuan, T.-F. Hippocampal Asymmetry: Differences in Structures and Functions. Neurochem. Res. 2013, 38, 453–460. [Google Scholar] [CrossRef]
- De la Fuente-Fernández, R.; Kishore, A.; Calne, D.B.; Ruth, T.J.; Stoessl, A. Nigrostriatal dopamine system and motor lateralization. Behav. Brain Res. 2000, 112, 63–68. [Google Scholar] [CrossRef]
- Budilin, S.Y.; Midzyanovskaya, I.S.; Shchegolevskii, N.V.; Ioffe, M.E.; Bazyan, A.S. Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats. Neurosci. Behav. Physiol. 2008, 38, 991–994. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Visker, K.E.; Cunningham, M.J.; Keller, R.W.; Glick, S.D.; Carlson, J.N. Paw Preference, Rotation, and Dopamine Function in Collins HI and LO Mouse Strains. Physiol. Behav. 1997, 61, 525–535. [Google Scholar] [CrossRef]
- Schwarting, R.; Nagel, J.A.; Huston, J.P. Asymmetries of brain dopamine metabolism related to conditioned paw usage in the rat. Brain Res. 1987, 417, 75–84. [Google Scholar] [CrossRef]
- Bisiacchi, P.; Cainelli, E. Structural and functional brain asymmetries in the early phases of life: A scoping review. Brain Struct. Funct. 2021, 1–18, Online ahead of print. [Google Scholar] [CrossRef]
- Vasung, L.; Rollins, C.K.; Velasco-Annis, C.; Yun, H.J.; Zhang, J.; Warfield, S.K.; Feldman, H.A.; Gholipour, A.; Grant, P.E. Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development. Cereb. Cortex 2020, 30, 4438–4453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Wang, F.; Wu, Z.; Wang, L.; Zhang, C.; Shen, D.; Li, G. Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Hum. Brain Mapp. 2019, 41, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, D.R.; Luchins, D.J.; Morihisa, J.; Wyatt, R.J. Asymmetrical volumes of the right and left frontal and occipital regions of the human brain. Ann. Neurol. 1982, 11, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.G.; Dooling, E.C.; Gilles, F.H. Left-Right Asymmetries of the Temporal Speech Areas of the Human Fetus. Arch. Neurol. 1977, 34, 346–348. [Google Scholar] [CrossRef]
- Hering-Hanit, R.; Achiron, R.; Lipitz, S.; Achiron, A. Asymmetry of fetal cerebral hemispheres: In utero ultrasound study. Arch. Dis. Child.-Fetal Neonatal Ed. 2001, 85, 194–196. [Google Scholar] [CrossRef] [Green Version]
- Kasprian, G.; Langs, G.; Brugger, P.C.; Bittner, M.; Weber, M.; Arantes, M.; Prayer, D. The Prenatal Origin of Hemispheric Asymmetry: An In Utero Neuroimaging Study. Cereb. Cortex 2011, 21, 1076–1083. [Google Scholar] [CrossRef]
- Hepper, P.G. The developmental origins of laterality: Fetal handedness. Dev. Psychobiol. 2013, 55, 588–595. [Google Scholar] [CrossRef]
- Hepper, P.G.; Wells, D.L.; Lynch, C. Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia 2005, 43, 313–315. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Schmitz, J.; Moinfar, Z.; Moser, D.; Klose, R.; Lor, S.; Kunz, G.; Tegenthoff, M.; Faustmann, P.; Francks, C.; et al. Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife 2017, 6, e22784. [Google Scholar] [CrossRef]
- Francks, C. Exploring human brain lateralization with molecular genetics and genomics. Ann. N. Y. Acad. Sci. 2015, 1359, 1–13. [Google Scholar] [CrossRef]
- Eckert, M.A.; Leonard, C.M.; Molloy, E.A.; Blumenthal, J.; Zijdenbos, A.; Giedd, J.N. The Epigenesis of Planum Temporale Asymmetry in Twins. Cereb. Cortex 2002, 12, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, H.; Herzog, A.; Schlaug, G.; Huang, Y.; Jäncke, L. Brain (A)Symmetry in Monozygotic Twins. Cereb. Cortex 1995, 5, 296–300. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Crivello, F.; Mazoyer, B. Is the planum temporale surface area a marker of hemispheric or regional language lateralization? Brain Struct. Funct. 2017, 223, 1–12. [Google Scholar] [CrossRef]
- Cohen-Cory, S. The Developing Synapse: Construction and Modulation of Synaptic Structures and Circuits. Science 2002, 298, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Katz, L.C.; Shatz, C.J. Synaptic Activity and the Construction of Cortical Circuits. Science 1996, 274, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Pratt, K.G.; Hiramoto, M.; Cline, H.T. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front. Neural Circuits 2016, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Sur, M.; Rubenstein, J.L.R. Patterning and Plasticity of the Cerebral Cortex. Science 2005, 310, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmour, D.; Rembold, M.; Leptin, M. From morphogen to morphogenesis and back. Nat. Cell Biol. 2017, 541, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.T. Making and breaking symmetry in development, growth and disease. Development 2019, 146, dev170985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, D.T.; Burdine, R.D. Left–Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet. 2017, 33, 616–628. [Google Scholar] [CrossRef]
- Levin, M. Left–right asymmetry in embryonic development: A comprehensive review. Mech. Dev. 2005, 122, 3–25. [Google Scholar] [CrossRef]
- Nakamura, T.; Hamada, H. Left-right patterning: Conserved and divergent mechanisms. Development 2012, 139, 3257–3262. [Google Scholar] [CrossRef] [Green Version]
- Zinski, J.; Tajer, B.; Mullins, M.C. TGF-β Family Signaling in Early Vertebrate Development. Cold Spring Harb. Perspect. Biol. 2018, 10, a033274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandler, W.M.; Paracchini, S. The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol. Med. 2014, 20, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, J.; Fraenz, C.; Schlüter, C.; Friedrich, P.; Kumsta, R.; Moser, D.; Güntürkün, O.; Genç, E.; Ocklenburg, S. Schizotypy and altered hemispheric asymmetries: The role of cilia genes. Psychiatry Res. Neuroimaging 2019, 294, 110991. [Google Scholar] [CrossRef] [PubMed]
- Signore, I.A.; Palma, K.; Concha, M.L. Nodal signalling and asymmetry of the nervous system. Philos. Trans. R. Soc. B: Biol. Sci. 2016, 371, 20150401. [Google Scholar] [CrossRef] [Green Version]
- Arning, L.; Ocklenburg, S.; Schulz, S.; Ness, V.; Gerding, W.M.; Hengstler, J.G.; Falkenstein, M.; Epplen, J.T.; Güntürkün, O.; Beste, C. PCSK6 VNTR Polymorphism Is Associated with Degree of Handedness but Not Direction of Handedness. PLoS ONE 2013, 8, e67251. [Google Scholar] [CrossRef] [Green Version]
- Berretz, G.; Arning, L.; Gerding, W.M.; Friedrich, P.; Fraenz, C.; Schlüter, C.; Epplen, J.T.; Güntürkün, O.; Beste, C.; Genç, E.; et al. Structural Asymmetry in the Frontal and Temporal Lobes Is Associated with PCSK6 VNTR Polymorphism. Mol. Neurobiol. 2019, 56, 7765–7773. [Google Scholar] [CrossRef] [PubMed]
- Postema, M.C.; Carrion-Castillo, A.; Fisher, S.E.; Vingerhoets, G.; Francks, C. The genetics of situs inversus without primary ciliary dyskinesia. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ihara, A.; Hirata, M.; Fujimaki, N.; Goto, T.; Umekawa, Y.; Fujita, N.; Terazono, Y.; Matani, A.; Wei, Q.; Yoshimine, T.; et al. Neuroimaging study on brain asymmetries in situs inversus totalis. J. Neurol. Sci. 2010, 288, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.N.; O’Craven, K.M.; Ticho, B.S.; Goldstein, A.M.; Makris, N.; Henson, J.W. Structural and functional brain asymmetries in human situs inversus totalis. Neurology 1999, 53, 1260. [Google Scholar] [CrossRef] [PubMed]
- Schuler, A.-L.; Kasprian, G.; Schwartz, E.; Seidl, R.; Diogo, M.C.; Mitter, C.; Langs, G.; Prayer, D.; Bartha-Doering, L. Mens inversus in corpore inverso? Language lateralization in a boy with situs inversus totalis. Brain Lang. 2017, 174, 9–15. [Google Scholar] [CrossRef]
- Vingerhoets, G.; Li, X.; Hou, L.; Bogaert, S.; Verhelst, H.; Gerrits, R.; Siugzdaite, R.; Roberts, N. Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct. Funct. 2018, 223, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vingerhoets, G.; Gerrits, R.; Bogaert, S. Atypical brain functional segregation is more frequent in situs inversus totalis. Cortex 2018, 106, 12–25. [Google Scholar] [CrossRef]
- Downes, J.C.; Birsoy, B.; Chipman, K.C.; Rothman, J.H. Handedness of a Motor Program in C. elegans Is Independent of Left-Right Body Asymmetry. PLoS ONE 2012, 7, e52138. [Google Scholar] [CrossRef] [Green Version]
- Barth, K.A.; Miklosi, A.; Watkins, J.; Bianco, I.H.; Wilson, S.W.; Andrew, R.J. fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses. Curr. Biol. 2005, 15, 844–850. [Google Scholar] [CrossRef] [Green Version]
- McManus, C. Reversed Bodies, Reversed Brains, and (Some) Reversed Behaviors: Of Zebrafish and Men. Dev. Cell 2005, 8, 796–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M. Leaning to the left: Laterality in the zebrafish forebrain. Trends Neurosci. 2003, 26, 308–313. [Google Scholar] [CrossRef]
- Hobert, O. Homeobox genes and the specification of neuronal identity. Nat. Rev. Neurosci. 2021, 22, 627. [Google Scholar] [CrossRef] [PubMed]
- De Kovel, C.G.F.; Lisgo, S.N.; Fisher, S.; Francks, C. Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Sci. Rep. 2018, 8, 12606. [Google Scholar] [CrossRef] [Green Version]
- Hepper, P.G.; Mccartney, G.R.; Shannon, E. Lateralised behaviour in first trimester human foetuses. Neuropsychologia 1998, 36, 531–534. [Google Scholar] [CrossRef]
- McCartney, G.; Hepper, P. Development of lateralized behaviour in the human fetus from 12 to 27 weeks’ gestation. Dev. Med. Child Neurol. 1999, 41, 83–86. [Google Scholar] [CrossRef]
- Sun, T.; Collura, R.V.; Ruvolo, M.; Walsh, C.A. Genomic and Evolutionary Analyses of Asymmetrically Expressed Genes in Human Fetal Left and Right Cerebral Cortex. Cereb. Cortex 2006, 16, i18–i25. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Patoine, C.; Abu-Khalil, A.; Visvader, J.; Sum, E.; Cherry, T.J.; Orkin, S.H.; Geschwind, D.H.; Walsh, C.A. Early Asymmetry of Gene Transcription in Embryonic Human Left and Right Cerebral Cortex. Science 2005, 308, 1794–1798. [Google Scholar] [CrossRef] [Green Version]
- Cederquist, G.Y.; Azim, E.; Shnider, S.J.; Padmanabhan, H.; Macklis, J.D. Lmo4 Establishes Rostral Motor Cortex Projection Neuron Subtype Diversity. J. Neurosci. 2013, 33, 6321–6332. [Google Scholar] [CrossRef] [Green Version]
- Asprer, J.S.T.; Lee, B.; Wu, C.S.; Vadakkan, T.; Dickinson, M.E.; Lu, H.-C.; Lee, S.-K. LMO4 functions as a co-activator of neurogenin 2 in the developing cortex. Development 2011, 138, 2823–2832. [Google Scholar] [CrossRef] [Green Version]
- Kashani, A.H.; Qiu, Z.; Jurata, L.; Lee, S.-K.; Pfaff, S.; Goebbels, S.; Nave, K.-A.; Ghosh, A. Calcium Activation of the LMO4 Transcription Complex and Its Role in the Patterning of Thalamocortical Connections. J. Neurosci. 2006, 26, 8398–8408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudel, R.; Newbury, D.F. Foxp2. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Arning, L.; Gerding, W.M.; Epplen, J.T.; Güntürkün, O.; Beste, C. FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain Lang. 2013, 126, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.O.L.; Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 2002, 3, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Karlebach, G.; Francks, C. Lateralization of gene expression in human language cortex. Cortex 2015, 67, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskal, J.R.; Kroes, R.A.; Otto, N.J.; Rahimi, O.; Claiborne, B.J. Distinct patterns of gene expression in the left and right hippocampal formation of developing rats. Hippocampus 2006, 16, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Ribic, A.; Biederer, T. Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plast. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Beste, C.; Arning, L.; Gerding, W.M.; Epplen, J.T.; Mertins, A.; Röder, M.C.; Bless, J.J.; Hugdahl, K.; Westerhausen, R.; Güntürkün, O.; et al. Cognitive Control Processes and Functional Cerebral Asymmetries: Association with Variation in the Handedness-Associated Gene LRRTM. Mol. Neurobiol. 2018, 55, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Francks, C.; Maegawa, S.; Laurén, J.; Abrahams, B.S.; Velayos-Baeza, A.; Medland, S.; Colella, S.; Groszer, M.; McAuley, E.Z.; Caffrey, T.M.; et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol. Psychiatry 2007, 12, 1129–1139. [Google Scholar] [CrossRef]
- Berardi, N.; Maffei, L. From visual experience to visual function: Roles of neurotrophins. J. Neurobiol. 1999, 41, 119–126. [Google Scholar] [CrossRef]
- Vicario-Abejón, C.; Owens, D.; McKay, R.; Segal, M. Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 2002, 3, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Sardar, R.; Zandieh, Z.; Namjoo, Z.; Soleimani, M.; Shirazi, R.; Hami, J. Laterality and sex differences in the expression of brain-derived neurotrophic factor in developing rat hippocampus. Metab. Brain Dis. 2021, 36, 133–144. [Google Scholar] [CrossRef]
- Marrocco, J.; McEwen, B.S. Sex in the brain: Hormones and sex differences. Dialog-Clin. Neurosci. 2016, 18, 373–383. [Google Scholar] [CrossRef]
- Deng, C.; Rogers, L.J. Factors affecting the development of lateralization in chicks. In Comparative Vertebrate Lateralization; Rogers, L.J., Andrew, R., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 206–246. [Google Scholar]
- Rogers, L.J. Development and function of lateralization in the avian brain. Brain Res. Bull. 2008, 76, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Otto, T.; Salm, L. Pigeons show how meta-control enables decision-making in an ambiguous world. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. A Matter of Degree: Strength of Brain Asymmetry and Behaviour. Symmetry 2017, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Diekamp, B.; Regolin, L.; Güntürkün, O.; Vallortigara, G. A left-sided visuospatial bias in birds. Curr. Biol. 2005, 15, R372–R373. [Google Scholar] [CrossRef]
- Manns, M. The riddle of nature and nurture-lateralization has an epigenetic trait. Behav. Brain Sci. 2005, 28, 602–603. [Google Scholar] [CrossRef]
- Manns, M. The epigenetic control of asymmetry formation: Lessons from the avian visual system. In Behavioral and Morphological Asymmetries in Vertebrates; Malashichev, Y., Deckel, W., Eds.; Landes Bioscience: Georgetown, TX, USA, 2006; pp. 13–23. [Google Scholar]
- Monsoro-Burq, A.H.; Levin, M. Avian models and the study of invariant asymmetry: How the chicken and the egg taught us to tell right from left. Int. J. Dev. Biol. 2018, 62, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Guo, Q.; Dai, E.; Forsch, N.; Taber, L.A. How the embryonic chick brain twists. J. R. Soc. Interface 2016, 13, 20160395. [Google Scholar] [CrossRef] [Green Version]
- Fujinaga, M.; Hoffman, B.B.; Baden, J.M. Axial rotation in rat embryos: Morphological analysis and microsurgical study on the role of the allantois. Teratology 1995, 51, 94–106. [Google Scholar] [CrossRef]
- Andrew, R.J.; Johnston, A.N.B.; Robins, A.; Rogers, L.J. Light experience and the development of behavioural lateralisation in chicks. II. Choice of familiar versus unfamiliar model social partner. Behav. Brain Res. 2004, 155, 67–76. [Google Scholar] [CrossRef]
- Deng, C.; Rogers, L.J. Social recognition and approach in the chick: Lateralization and effect of visual experience. Anim. Behav. 2002, 63, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Mascetti, G.G.; Vallortigara, G. Why do birds sleep with one eye open? Light exposure of the chick embryo as a determinant of monocular sleep. Curr. Biol. 2001, 11, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Costalunga, G.; Kobylkov, D.; Rosa-Salva, O.; Vallortigara, G.; Mayer, U. Light-incubation effects on lateralisation of single unit responses in the visual Wulst of domestic chicks. Brain Struct. Funct. 2021, 1–17. [Google Scholar] [CrossRef]
- Johnston, A.; Rogers, L.; Dodd, P. [3H]MK-801 binding asymmetry in the IMHV region of dark-reared chicks is reversed by imprinting. Brain Res. Bull. 1995, 37, 5–8. [Google Scholar] [CrossRef]
- Lorenzi, E.; Mayer, U.; Rosa-Salva, O.; Morandi-Raikova, A.; Vallortigara, G. Spontaneous and light-induced lateralization of immediate early genes expression in domestic chicks. Behav. Brain Res. 2019, 368, 111905. [Google Scholar] [CrossRef] [PubMed]
- Morandi-Raikova, A.; Danieli, K.; Lorenzi, E.; Rosa-Salva, O.; Mayer, U. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 2021, 26, 163–185. [Google Scholar] [CrossRef] [PubMed]
- Letzner, S.; Patzke, N.; Verhaal, J.; Manns, M. Shaping a lateralized brain: Asymmetrical light experience modulates access to visual interhemispheric information in pigeons. Sci. Rep. 2014, 4, 4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letzner, S.; Güntürkün, O.; Lor, S.; Pawlik, R.J.; Manns, M. Visuospatial attention in the lateralised brain of pigeons—A matter of ontogenetic light experiences. Sci. Rep. 2017, 7, 15547. [Google Scholar] [CrossRef] [Green Version]
- Chiandetti, C. Pseudoneglect and embryonic light stimulation in the avian brain. Behav. Neurosci. 2011, 125, 775–782. [Google Scholar] [CrossRef]
- Chiandetti, C.; Galliussi, J.; Andrew, R.J.; Vallortigara, G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 2013, 3, 2701. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, D.; Galvani, F.; Mascetti, G.G.; Vallortigara, G. Light exposure of the chick embryo influences monocular sleep. Behav. Brain Res. 2002, 134, 447–466. [Google Scholar] [CrossRef]
- Zhu, L.; Marvin, M.J.; Gardiner, A.; Lassar, A.B.; Mercola, M.; Stern, C.D.; Levin, M. Cerberus regulates left–right asymmetry of the embryonic head and heart. Curr. Biol. 1999, 9, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Ververs, I.A.; De Vries, J.I.; Van Geijn, H.P.; Hopkins, B. Prenatal head position from 12–38 weeks. I. Developmental aspects. Early Hum. Dev. 1994, 39, 83–91. [Google Scholar] [CrossRef]
- Mampe, B.; Friederici, A.D.; Christophe, A.; Wermke, K. Newborns’ Cry Melody Is Shaped by Their Native Language. Curr. Biol. 2009, 19, 1994–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partanen, E.; Kujala, T.; Näätänen, R.; Liitola, A.; Sambeth, A.; Huotilainen, M. Learning-induced neural plasticity of speech processing before birth. Proc. Natl. Acad. Sci. USA 2013, 110, 15145–15150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagard, J. The nature and nurture of human infant hand preference. Ann. N. Y. Acad. Sci. 2013, 1288, 114–123. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Bürger, C.; Westermann, C.; Schneider, D.; Biedermann, H.; Güntürkün, O. Visual experience affects handedness. Behav. Brain Res. 2010, 207, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Previc, F.H. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol. Rev. 1991, 98, 299–334. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.; Osorio, D.; Budaev, S. Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 983–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budaev, S.; Andrew, R.J. Patterns of early embryonic light exposure determine behavioural asymmetries in zebrafish: A habenular hypothesis. Behav. Brain Res. 2009, 200, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C.; Vallortigara, G. Distinct effect of early and late embryonic light-stimulation on chicks’ lateralization. Neuroscience 2019, 414, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Caputto, B.L.; Guido, M.E. Immediate early gene expression within the visual system: Light and circadian regulation in the retina and the suprachiasmatic nucleus. Neurochem. Res. 2000, 25, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ströckens, F.; Freund, N.; Manns, M.; Ocklenburg, S.; Güntürkün, O. Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct. Funct. 2012, 218, 1197–1209. [Google Scholar] [CrossRef]
- Letzner, S.; Manns, M.; Güntürkün, O. Light-dependent development of the tectorotundal projection in pigeons. Eur. J. Neurosci. 2020, 52, 3561–3571. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. Light experience and asymmetry of brain function in chickens. Nat. Cell Biol. 1982, 297, 223–225. [Google Scholar] [CrossRef]
- Skiba, M.; Diekamp, B.; Güntürkün, O. Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behav. Brain Res. 2002, 134, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Light input and the reversal of functional lateralization in the chicken brain. Behav. Brain Res. 1990, 38, 211–221. [Google Scholar] [CrossRef]
- Manns, M.; Güntürkün, O. Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon’s (Columba livia) visual system. Behav. Neurosci. 1999, 113, 1257–1266. [Google Scholar] [CrossRef]
- Manns, M.; Güntürkün, O. ‘Natural’ and artificial monocular deprivation effects on thalamic soma sizes in pigeons. NeuroReport 1999, 10, 3223–3228. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.; Deng, C. Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway. Behav. Brain Res. 2005, 159, 63–71. [Google Scholar] [CrossRef]
- Hausmann, M. Why sex hormones matter for neuroscience: A very short review on sex, sex hormones, and functional brain asymmetries. J. Neurosci. Res. 2017, 95, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hirnstein, M.; Hugdahl, K.; Hausmann, M. Cognitive sex differences and hemispheric asymmetry: A critical review of 40 years of research. Laterality 2019, 24, 204–252. [Google Scholar] [CrossRef]
- Manns, M.; Güntürkün, O. Light experience induces differential asymmetry pattern of GABA- and parvalbumin-positive cells in the pigeon’s visual midbrain. J. Chem. Neuroanat. 2003, 25, 249–259. [Google Scholar] [CrossRef]
- Prior, H.; Diekamp, B.; Güntürkün, O.; Manns, M. Post-hatch activity-dependent modulation of visual asymmetry formation in pigeons. NeuroReport 2004, 15, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Freund, N.; Leske, O.; Güntürkün, O. Breaking the balance: Ocular BDNF-injections induce visual asymmetry in pigeons. Dev. Neurobiol. 2008, 68, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Güntürkün, O.; Heumann, R.; Blöchl, A. Photic inhibition of TrkB/Ras activity in the pigeon’s tectum during development: Impact on brain asymmetry formation. Eur. J. Neurosci. 2005, 22, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, H.V.; Bureau, I.; Svoboda, K.; Zador, A.M. The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits. Nat. Neurosci. 2010, 13, 1413–1420. [Google Scholar] [CrossRef]
- Nava, E.; Güntürkün, O.; Röder, B. Experience-dependent emergence of functional asymmetries. Laterality 2013, 18, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Le Grand, R.; Mondloch, C.J.; Maurer, D.; Brent, H.P. Early visual experience and face processing. Nat. Cell Biol. 2001, 410, 890. [Google Scholar] [CrossRef]
- Röder, B.; Ley, P.; Shenoy, B.H.; Kekunnaya, R.; Bottari, D. Sensitive periods for the functional specialization of the neural system for human face processing. Proc. Natl. Acad. Sci. USA 2013, 110, 16760–16765. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S.; Pegado, F.; Braga, L.W.; Ventura, P.; Filho, G.N.; Jobert, A.; Dehaene-Lambertz, G.; Kolinsky, R.; Morais, J.; Cohen, L. How Learning to Read Changes the Cortical Networks for Vision and Language. Science 2010, 330, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Dundas, E.M.; Plaut, D.C.; Behrmann, M. An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychology 2014, 61, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Freund, N.; Valencia-Alfonso, C.E.; Kirsch, J.; Brodmann, K.; Manns, M.; Güntürkün, O. Asymmetric top-down modulation of ascending visual pathways in pigeons. Neuropsychology 2016, 83, 37–47. [Google Scholar] [CrossRef]
- Manns, M.; Römling, J. The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat. Commun. 2012, 3, 696. [Google Scholar] [CrossRef] [PubMed]
- Dharmaretnam, M.; Rogers, L. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav. Brain Res. 2005, 162, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C.; Regolin, L.; Rogers, L.J.; Vallortigara, G. Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behav. Brain Res. 2005, 163, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.S. Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci. 2005, 6, 653–659. [Google Scholar] [CrossRef]
- Witelson, S.; Nowakowski, R. Left out axoms make men right: A hypothesis for the origin of handedness and functional asymmetry. Neuropsychology 1991, 29, 327–333. [Google Scholar] [CrossRef]
- Besson, M.; Gache, C.; Bertucci, F.; Brooker, R.; Roux, N.; Jacob, H.; Berthe, C.; Sovrano, V.A.; Dixson, D.L.; Lecchini, D. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Broder, E.D.; Angeloni, L.M. Predator-induced phenotypic plasticity of laterality. Anim. Behav. 2014, 98, 125–130. [Google Scholar] [CrossRef]
- Jozet-Alves, C.; Hébert, M. Embryonic exposure to predator odour modulates visual lateralization in cuttlefish. Proc. R. Soc. B Boil. Sci. 2013, 280, 20122575. [Google Scholar] [CrossRef] [Green Version]
- Manns, M. Laterality for the next decade: Costs and benefits of neuronal asymmetries–putting lateralization in an evolutionary context. Laterality 2021, 26, 315–318. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manns, M. It Is Not Just in the Genes. Symmetry 2021, 13, 1815. https://doi.org/10.3390/sym13101815
Manns M. It Is Not Just in the Genes. Symmetry. 2021; 13(10):1815. https://doi.org/10.3390/sym13101815
Chicago/Turabian StyleManns, Martina. 2021. "It Is Not Just in the Genes" Symmetry 13, no. 10: 1815. https://doi.org/10.3390/sym13101815
APA StyleManns, M. (2021). It Is Not Just in the Genes. Symmetry, 13(10), 1815. https://doi.org/10.3390/sym13101815