Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions
Abstract
:1. Introduction, Definitions and Motivation
- 1.
- If we put and let , we have where is the functions class of Janowski-type meromorphic multivalent close-to-convex functions.
- 2.
- If we put
- 3.
- By putting
- 4.
- If we take
2. A Set of Main Results
3. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1171–1180. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Aral, A. On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals. J. Korean Math. Soc. 2006, 23, 425–443. [Google Scholar] [CrossRef]
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 2006, 17231. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-L.; Shi, L.; Wang, Z.-G. On a Subclass of Meromorphic Close-to-Convex Functions. Sci. World J. 2014, 2014, 806168. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Arif, M.; Ahmad, B. New subfamily of meromorphic multivalent starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Frasin, B.A.; Aouf, M.K.; Abdeljawad, T.; Mashwani, W.K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 2021, 6, 3037–3052. [Google Scholar] [CrossRef]
- Ahmad, B.; Arif, M. New subfamily of meromorphic convex functions in circular domain involving q-operator. Int. J. Anal. Appl. 2018, 16, 75–82. [Google Scholar]
- Islam, S.; Khan, M.G.; Ahmad, B.; Arif, M.; Chinram, R. Q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function. Mathematics 2020, 8, 1676. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator. Symmetry 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Mashwani, W.K.; Salleh, Z.; Tang, H. Applications of a New q-Difference Operator in Janowski-Type Meromorphic Convex Functions. J. Funct. Spaces 2021, 2021, 5534357. [Google Scholar]
- Hu, Q.; Srivastava, H.; Ahmad, B.; Khan, N.; Khan, M.; Mashwani, W.; Khan, B. A subclass of multivalent Janowski type q-Starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Dziok, J.; Murugusundaramoorthy, G.; Sokoł, J. On certain class of meromorphic functions with positive coefcients. Acta Math. Sci. B 2012, 32, 1376–1390. [Google Scholar] [CrossRef]
- Huda, A.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Stud. Univ. Babes-Bolyai Math. 2013, 58, 529–537. [Google Scholar]
- Pommerenke, C. On meromorphic starlike functions. Pac. J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Uralegaddi, B.A.; Somanatha, C. Certain diferential operators for meromorphic functions. Houst. J. Math. 1991, 17, 279–284. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. https://doi.org/10.3390/sym13101840
Shi L, Ahmad B, Khan N, Khan MG, Araci S, Mashwani WK, Khan B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry. 2021; 13(10):1840. https://doi.org/10.3390/sym13101840
Chicago/Turabian StyleShi, Lei, Bakhtiar Ahmad, Nazar Khan, Muhammad Ghaffar Khan, Serkan Araci, Wali Khan Mashwani, and Bilal Khan. 2021. "Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions" Symmetry 13, no. 10: 1840. https://doi.org/10.3390/sym13101840