An Application of the Eigenproblem for Biochemical Similarity
Abstract
:1. Introduction
- •
- CAB-Align uses the residue–residue contact area to identify regions of similarity [5].
- •
- Caretta uses rotation-invariant technique signals of distances derived from overlapping contiguous stretches of residues to find an initial superposition [6].
- •
- DALI [7].
- •
- LS-align generates fast and accurate atom-level structural alignments of ligand molecules through an iterative heuristic search of the target function that combines comparisons of inter-atom distance with mass and chemical bonds [8].
- •
- MATT uses a fragment-based approach that allows for local flexibility between fragment pairs from two input structures and then a dynamic programming algorithm to assemble these intermediate pairs [9].
- •
- TM-align uses the length-independent TM-score as a measure of similarity between two proteins in a dynamic programming approach [10].
2. Materials and Methods
- •
- 3D structural data for heavy atoms
- •
- 3D distance matrix for heavy atoms
- •
- The “in” and “results” directories, the former containing an “xyz” directory and the latter containing “aligned,” “rotated,” and “tables” directories
- •
- Geometrically optimized amino acid *.xyz or *.sdf files that need to be located in the “in” folder
- •
- The name of the file representing the selected reference amino acid or the number associated with the file (1 representing the first file in the “in” directory)
- •
- Input variable Num.M, which defines how many extra candidates can be taken into consideration in case Num.low is satisfied by only one candidate
- •
- Input variable Num.low, which defines the target percentage differences between ST of two candidates in order to accept and stop searching for candidates with fewer atoms
- •
- Input variable Num.low2, which defines the percentage of the maximum found TM-score such that even lower-scored candidates are exported in *.xls tables and *.xyz files
- •
- Input variables Num.empi1 through 3 needed by the TM-score or another means of choosing between alignments
- 1.
- 3D structural data for heavy atoms as T1
- 2.
- 3D distance matrix for heavy atoms as T2
- 3.
- Cartesian coordinate distance matrices for heavy atoms as T3–T5
- 4.
- Eigenvalues for above Cartesian coordinate distance matrices as T6
- 5.
- Polynomials for the same Cartesian coordinate distance matrices as T7
- 6.
- A table containing data such as Table A1 available in Appendix A, but no images, named Tscore
- •
- Initial *.sdf files are converted in the “in\xyz” directory.
- •
- In the “results\aligned” directory, the results from the original eigenproblem program are exported.
- •
- In the “results\rotated” directory, all *.xyz files related to the Tscore table can be found.
3. Results
4. Discussion
- •
- In the case of alanine 005950, a small score is given to the aligned case number 269, which is the only one with elemental similarity.
- •
- For valine 006287, threonine 006288, and arginine 006322, the best scores are found for candidates with a lower number of aligned atoms. The best candidates with more aligned atoms are 006287-1, 006288-1, and 6322-19.
- •
- The outputs for aspartic acid 005960, lysine 005962, histidine 006274, and tryptophan 006305 did not contain the expected alignments.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
3D Views of Alignment | Aligned Structure and Index | TM-Score | Selected Atoms from 000750 | −2Sx, −2Sy, and −2Sz of the Reference Candidate | Selected Atoms from the Aligned Structure | −2Sx, −2Sy, and −2Sz of the Aligned Candidate |
---|---|---|---|---|---|---|
005862-13 | 0.49953 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −13.611 −25.8092 −61.4329 | |
005862-14 | 0.59034 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −13.611 −25.8092 −61.4329 | |
005950-3 | 0.97619 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −4.4817 −70.1638 −28.7497 | |
005951-41 | 0.80012 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −69.7742 −4.2881 −26.9964 | |
005960-37 | 0.86944 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −71.2314 −27.4581 −2.0944 | |
005961-33 | 0.84632 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −71.2576 −3.3832 −27.3196 | |
005961-170 | 0.95817 | OOCC | −0.0011 −20.6582 −23.8791 | OCNC | −24.0884 −0.0004 −21.1849 | |
005961-173 | 0.93357 | OOCC | −0.0011 −20.6582 −23.8791 | NCOC | −0.0004 −24.0884 −21.1849 | |
005961-198 | 0.79095 | OOCC | −0.0011 −20.6582 −23.8791 | OCOC | −0.2581 −24.3734 −20.2611 | |
005961-283 | 0.82694 | OONCC | −0.0022 −14.8281 −54.3193 | OONCC | −53.2066 −1.5086 −15.0372 | |
005961-483 | 0.85761 | OONCC | −0.0032 −4.3992 −57.2565 | OONCC | −54.6736 −2.475 −21.8424 | |
005962-12 | 0.75429 | OONCC | −0.004 −27.3493 −73.5567 | CNOCC | −70.2261 −29.0349 −4.2049 | |
005962-40 | 0.91715 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −1.5282 −26.4302 −73.3027 | |
006057-40 | 0.86353 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −2.3691 −27.3223 −70.9619 | |
006106-2 | 0.6392 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −8.1806 −61.8107 −30.7736 | |
006137-40 | 0.86184 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −2.2896 −27.3359 −71.1183 | |
006140-40 | 0.86912 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −2.1499 −27.3655 −71.1355 | |
006267-2 | 0.86616 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −7.4136 −64.3092 −29.0284 | |
006274-41 | 0.83006 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −69.8017 −3.9136 −26.9388 | |
006287-15 | 0.69499 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −68.0382 −8.7019 −24.3289 | |
006288-65 | 0.92522 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −72.4925 −27.4791 −1.3521 | |
006305-1 | 0.80948 | OONCC | −0.004 −27.3493 −73.5567 | CCCCC | −0.0317 −25.8926 −74.5664 | |
006305-4 | 0.66756 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −0.0317 −74.5664 −25.8926 | |
006305-42 | 0.7386 | OONCC | −0.004 −27.3493 −73.5567 | CCNCC | −1.1175 −25.7209 −72.1151 | |
006306-11 | 0.82228 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −70.3452 −26.3299 −4.0766 | |
006322-14 | 0.97621 | OONCC | −0.004 −27.3493 −73.5567 | NNCNC | −73.6395 −27.5846 −0.0063 | |
006322-93 | 0.99322 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −72.695 −0.0803 −27.8005 | |
033032-69 | 0.96492 | OONCC | −0.004 −27.3493 −73.5567 | OOCCC | −79.1546 −0.3715 −26.9955 | |
033032-115 | 0.93477 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −73.0115 −27.7341 −1.111 | |
145742-4 | 0.92766 | OONCC | −0.004 −27.3493 −73.5567 | OONCC | −6.2518 −65.5464 −27.6594 |
3D Views of Alignment | Aligned Structure and Index | TM-Score | Selected Atoms from 000750 | −2Sx, −2Sy, and −2Sz of the Reference Candidate | Selected Atoms from the Aligned Structure | −2Sx, −2Sy, and −2Sz of the Aligned Candidate |
---|---|---|---|---|---|---|
000750-6 | 0.48834 | OONCC | −13.611 −25.8092 −61.4329 | OONCC | −73.5567 −27.3493 −0.004 | |
000750-8 | 0.42207 | OONCC | −13.611 −25.8092 −61.4329 | OONCC | −73.5567 −0.004 −27.3493 | |
000750-10 | 0.44278 | ONCCC | −13.611 −25.8092 −61.4329 | ONCOC | −0.004 −27.3493 −73.5567 | |
000750-11 | 0.44133 | OCCC | −13.611 −25.8092 −61.4329 | OCNC | −73.5567 −27.3493 −0.004 | |
005950-148 | 0.50246 | OONCC | −8.3671 −29.9695 −62.0051 | OOCCC | −71.7263 −5.4464 −25.4841 | |
005950-164 | 0.5433 | OOCCC | −8.3671 −29.9695 −62.0051 | OOCCC | −71.7263 −25.4841 −5.4464 | |
005950-248 | 0.60276 | OONCC | −8.3671 −29.9695 −62.0051 | OOCCC | −71.7263 −5.4464 −25.4841 | |
005950-269 | 0.56223 | OONCC | −8.3671 −29.9695 −62.0051 | OONCC | −0.31 −73.3751 −27.8286 | |
005951-16 | 0.78486 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOONCCC | −147.0913 −24.8576 −106.5052 | |
005960-1 | 0.42025 | SOONCCC | −37.2279 −107.1892 −159.5151 | NOCOCCC | −11.3045 −110.1124 −182.4483 | |
005960-6 | 0.4143 | SONCCC | −37.2279 −107.1892 −159.5151 | OCNCCC | −11.3045 −182.4483 −110.1124 | |
005960-7 | 0.3736 | SOONCCC | −37.2279 −107.1892 −159.5151 | NOOOCCC | −182.4483 −110.1124 −11.3045 | |
005960-10 | 0.42411 | SOOCCC | −37.2279 −107.1892 −159.5151 | CNCCOC | −11.3045 −182.4483 −110.1124 | |
005960-12 | 0.40875 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOOCCCC | −182.4483 −110.1124 −11.3045 | |
005960-13 | 0.39022 | OONCC | −37.2279 −107.1892 −159.5151 | OCCCC | −110.1124 −11.3045 −182.4483 | |
005960-14 | 0.39347 | SOONCCC | −37.2279 −107.1892 −159.5151 | ONCOCCC | −11.3045 −110.1124 −182.4483 | |
005960-15 | 0.45748 | SOONCCC | −37.2279 −107.1892 −159.5151 | CCNOCOC | −11.3045 −110.1124 −182.4483 | |
005960-24 | 0.42411 | SOOCCC | −37.2279 −107.1892 −159.5151 | CNCCOC | −110.1124 −11.3045 −182.4483 | |
005960-25 | 0.37188 | SOOCCC | −37.2279 −107.1892 −159.5151 | CONCOC | −182.4483 −110.1124 −11.3045 | |
005960-26 | 0.39022 | OONCC | −37.2279 −107.1892 −159.5151 | OCCCC | −11.3045 −110.1124 −182.4483 | |
005960-27 | 0.40875 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOOCCCC | −24.9542 −207.716 −70.9892 | |
005960-28 | 0.39485 | SOONCCC | −37.2279 −107.1892 −159.5151 | NOOOCCC | −207.716 −24.9542 −70.9892 | |
005960-31 | 0.3717 | SOONCCC | −37.2279 −107.1892 −159.5151 | OCCOCOC | −24.9542 −207.716 −70.9892 | |
005960-35 | 0.42601 | SOCCC | −37.2279 −107.1892 −159.5151 | OCCOC | −24.9542 −207.716 −70.9892 | |
005960-37 | 0.42553 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOOCCCC | −207.716 −70.9892 −24.9542 | |
005960-43 | 0.43719 | SOOCCC | −37.2279 −107.1892 −159.5151 | OOCOCC | −207.716 −70.9892 −24.9542 | |
005960-49 | 0.42601 | SOCCC | −37.2279 −107.1892 −159.5151 | OCCOC | −70.9892 −24.9542 −207.716 | |
005960-50 | 0.46341 | SOOCCC | −37.2279 −107.1892 −159.5151 | COCOCC | −207.716 −70.9892 −24.9542 | |
005960-52 | 0.42553 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOOCCCC | −207.716 −70.9892 −24.9542 | |
005961-14 | 0.61685 | SCCC | −31.8416 −89.3906 −126.7171 | OCCC | −1.4071 −33.3867 −210.7718 | |
005961-155 | 0.55368 | SOOCCC | −5.2465 −88.3648 −122.3962 | COOCNC | −118.8959 −26.4831 −65.5527 | |
005961-179 | 0.5482 | SOONCC | −28.5971 −38.2796 −135.5565 | OCCNCC | −14.3175 −66.8735 −113.4675 | |
005961-230 | 0.59214 | SOOCCC | −28.5971 −38.2796 −135.5565 | COOCNC | −118.8959 −26.4831 −65.5527 | |
005961-239 | 0.55869 | SOOCCC | −28.5971 −38.2796 −135.5565 | OCNCOC | −118.8959 −65.5527 −26.4831 | |
005961-242 | 0.56355 | SNCCC | −28.9822 −86.0507 −136.5352 | CNCOC | −210.7718 −1.4071 −33.3867 | |
005962-1 | 0.43119 | SONCCC | −37.2279 −107.1892 −159.5151 | OCNCOC | −8.8452 −80.0543 −237.5683 | |
005962-2 | 0.39314 | SONCCC | −31.7674 −35.7196 −105.9193 | OCNCOC | −8.8452 −237.5683 −80.0543 | |
005962-3 | 0.41372 | SONCCC | −37.2279 −107.1892 −159.5151 | CNOCOC | −237.5683 −8.8452 −80.0543 | |
005962-15 | 0.44908 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −8.8452 −80.0543 −237.5683 | |
005962-18 | 0.40717 | SOOCCC | −37.2279 −107.1892 −159.5151 | ONCCCC | −237.5683 −80.0543 −8.8452 | |
005962-23 | 0.44908 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −237.5683 −8.8452 −80.0543 | |
005962-25 | 0.4643 | SOOCCC | −37.2279 −107.1892 −159.5151 | COOCCC | −237.5683 −80.0543 −8.8452 | |
005962-30 | 0.40299 | OONCC | −31.7674 −35.7196 −105.9193 | CNOCC | −7.4698 −103.8043 −62.1387 | |
005962-32 | 0.39753 | SONCCC | −31.7674 −35.7196 −105.9193 | OONCCC | −103.8043 −62.1387 −7.4698 | |
005962-34 | 0.44778 | OONCC | −31.7674 −35.7196 −105.9193 | OONCC | −103.8043 −7.4698 −62.1387 | |
005962-39 | 0.41984 | SOOCCC | −31.7674 −35.7196 −105.9193 | COOCNC | −7.4698 −62.1387 −103.8043 | |
005962-40 | 0.46743 | SONCCC | −31.7674 −35.7196 −105.9193 | COOCNC | −7.4698 −62.1387 −103.8043 | |
005962-46 | 0.38057 | SOOCCC | −31.7674 −35.7196 −105.9193 | OCNCOC | −7.4698 −62.1387 −103.8043 | |
005962-48 | 0.46743 | SONCCC | −31.7674 −35.7196 −105.9193 | COOCNC | −103.8043 −7.4698 −62.1387 | |
006057-16 | 0.76753 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −173.9182 −101.9463 −23.1192 | |
006057-144 | 0.62652 | SOONCCC | −28.5971 −38.2796 −135.5565 | COONCCC | −13.4258 −40.6418 −148.5831 | |
006106-16 | 0.54749 | SOOCCC | −37.2279 −107.1892 −159.5151 | COOCCC | −28.1552 −71.8562 −208.2835 | |
006106-83 | 0.68249 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −37.4924 −148.3439 −113.3827 | |
006137-18 | 0.8267 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −156.8033 −107.15 −27.0805 | |
006140-5 | 0.65026 | SOONCCC | −11.1453 −70.4461 −121.9608 | COONCCC | −9.3713 −53.8297 −141.0272 | |
006140-28 | 0.76831 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −173.9288 −101.9683 −23.0865 | |
006140-228 | 0.62808 | SOONCCC | −28.5971 −38.2796 −135.5565 | COONCCC | −108.7941 −87.3884 −5.489 | |
006140-256 | 0.62895 | SOONCCC | −28.5971 −38.2796 −135.5565 | COONCCC | −13.4284 −40.6224 −148.603 | |
006140-453 | 0.69151 | SOONCCC | −31.8416 −89.3906 −126.7171 | COONCCC | −148.4493 −83.8248 −16.8891 | |
006267-150 | 0.75426 | SOOCCC | −28.5971 −38.2796 −135.5565 | OONCCC | −114.7445 −56.4402 −32.1581 | |
006267-270 | 0.64267 | OONCCC | −30.6696 −83.1536 −110.9209 | CNOCOC | −157.5302 −52.8112 −14.0738 | |
006274-11 | 0.52022 | SOOCC | −30.6696 −83.1536 −110.9209 | CCNCC | −29.2987 −34.082 −161.888 | |
006274-20 | 0.51619 | OCCC | −37.2279 −107.1892 −159.5151 | CCCN | −8.53 −238.2463 −49.0387 | |
006274-44 | 0.47052 | OONCC | −31.7674 −35.7196 −105.9193 | OONCC | −104.752 −19.0687 −49.267 | |
006274-75 | 0.48041 | SOOCCC | −11.1453 −70.4461 −121.9608 | CNOCCC | −27.4473 −30.9096 −145.1067 | |
006274-78 | 0.58417 | SOOCCC | −11.1453 −70.4461 −121.9608 | CNCCCC | −145.1067 −30.9096 −27.4473 | |
006274-83 | 0.48041 | SOOCCC | −11.1453 −70.4461 −121.9608 | CNOCCC | −145.1067 −27.4473 −30.9096 | |
006274-140 | 0.47356 | SOONCC | −28.9822 −86.0507 −136.5352 | NCOCCC | −7.9674 −210.2593 −33.7955 | |
006274-151 | 0.5215 | SOOCCC | −28.9822 −86.0507 −136.5352 | CNCCCC | −210.2593 −7.9674 −33.7955 | |
006274-170 | 0.48165 | OCCC | −28.9822 −86.0507 −136.5352 | CCCN | −6.8009 −203.291 −41.7099 | |
006274-175 | 0.48518 | SOOCCC | −28.9822 −86.0507 −136.5352 | CCCCNC | −6.8009 −41.7099 −203.291 | |
006274-184 | 0.48165 | OCCC | −28.9822 −86.0507 −136.5352 | CCCN | −41.7099 −6.8009 −203.291 | |
006274-188 | 0.47675 | SOONCCC | −28.9822 −86.0507 −136.5352 | NOOCCCC | −175.3227 −13.4702 −62.6855 | |
006274-195 | 0.54066 | SOCCC | −28.9822 −86.0507 −136.5352 | ONCCC | −13.4702 −175.3227 −62.6855 | |
006274-253 | 0.51888 | SOOCCC | −28.9822 −86.0507 −136.5352 | CCCCCC | −170.4509 −72.8278 −7.6721 | |
006274-266 | 0.49887 | OONCC | −30.6696 −83.1536 −110.9209 | NCCCC | −29.2987 −161.888 −34.082 | |
006274-270 | 0.47705 | OONC | −30.6696 −83.1536 −110.9209 | CNCC | −29.2987 −161.888 −34.082 | |
006274-275 | 0.4984 | SOOCCC | −30.6696 −83.1536 −110.9209 | NCCNCC | −29.2987 −34.082 −161.888 | |
006274-284 | 0.47705 | OONC | −30.6696 −83.1536 −110.9209 | CNCC | −34.082 −29.2987 −161.888 | |
006274-291 | 0.47128 | SOONCC | −31.8416 −89.3906 −126.7171 | OCNCCC | −9.7892 −202.8613 −35.0825 | |
006274-303 | 0.47216 | SOOCCC | −31.8416 −89.3906 −126.7171 | CCCCCC | −202.8613 −35.0825 −9.7892 | |
006287-1 | 0.44763 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −28.463 −162.9622 −112.2806 | |
006287-10 | 0.50113 | ONCCC | −37.2279 −107.1892 −159.5151 | COCNC | −28.463 −112.2806 −162.9622 | |
006287-14 | 0.43465 | SOONCCC | −37.2279 −107.1892 −159.5151 | OCCNCCC | −28.463 −112.2806 −162.9622 | |
006287-20 | 0.43271 | SOOCCC | −37.2279 −107.1892 −159.5151 | COOCCC | −28.463 −112.2806 −162.9622 | |
006287-22 | 0.43465 | SOONCCC | −37.2279 −107.1892 −159.5151 | OCCNCCC | −162.9622 −28.463 −112.2806 | |
006287-24 | 0.46687 | SOOCCC | −37.2279 −107.1892 −159.5151 | OCCCCC | −162.9622 −112.2806 −28.463 | |
006288-1 | 0.48391 | SOONCCC | −37.2279 −107.1892 −159.5151 | OOONCCC | −43.0635 −66.5743 −180.8565 | |
006288-3 | 0.45585 | SOONCCC | −11.1453 −70.4461 −121.9608 | OCCNOCC | −43.0635 −180.8565 −66.5743 | |
006288-6 | 0.45633 | OONCCC | −37.2279 −107.1892 −159.5151 | CNOCCC | −43.0635 −180.8565 −66.5743 | |
006288-13 | 0.51827 | SONCCC | −37.2279 −107.1892 −159.5151 | NCOCCC | −180.8565 −66.5743 −43.0635 | |
006288-26 | 0.5201 | SOOCCC | −37.2279 −107.1892 −159.5151 | OCOCCC | −180.8565 −66.5743 −43.0635 | |
006288-28 | 0.51827 | SONCCC | −37.2279 −107.1892 −159.5151 | NCOCCC | −8.4024 −103.7817 −61.1853 | |
006288-37 | 0.42733 | SONCCC | −31.7674 −35.7196 −105.9193 | OONCOC | −8.4024 −61.1853 −103.7817 | |
006288-72 | 0.42211 | SOOCCC | −11.1453 −70.4461 −121.9608 | OCNCOC | −29.1037 −62.1843 −111.9187 | |
006305-1 | 0.50837 | SONCCC | −37.2279 −107.1892 −159.5151 | CCCCCC | −1.9654 −82.3993 −214.7367 | |
006305-2 | 0.56881 | SONCCC | −37.2279 −107.1892 −159.5151 | CCNCCC | −3.6968 −75.0753 −224.1486 | |
006305-5 | 0.48382 | SONCCC | −37.2279 −107.1892 −159.5151 | CCNCCC | −2.4671 −82.2841 −211.504 | |
006305-9 | 0.54483 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −1.9654 −214.7367 −82.3993 | |
006305-23 | 0.47679 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −214.7367 −1.9654 −82.3993 | |
006305-35 | 0.51784 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −224.1486 −3.6968 −75.0753 | |
006305-36 | 0.50682 | OOCCC | −37.2279 −107.1892 −159.5151 | CNCCC | −75.0753 −224.1486 −3.6968 | |
006305-44 | 0.51678 | SOONCCC | −37.2279 −107.1892 −159.5151 | CCCCCCC | −224.1486 −75.0753 −3.6968 | |
006305-49 | 0.50682 | OOCCC | −37.2279 −107.1892 −159.5151 | CNCCC | −75.0753 −3.6968 −224.1486 | |
006305-59 | 0.51678 | SOONCCC | −37.2279 −107.1892 −159.5151 | CCCCCCC | −1.8573 −208.8667 −86.2881 | |
006305-60 | 0.53173 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −208.8667 −1.8573 −86.2881 | |
006305-88 | 0.49077 | SONCCC | −37.2279 −107.1892 −159.5151 | NCCCCC | −0.5256 −221.8958 −77.1639 | |
006305-93 | 0.4984 | SONCCC | −37.2279 −107.1892 −159.5151 | CCCCCC | −0.5256 −77.1639 −221.8958 | |
006305-97 | 0.56351 | SOONCCC | −37.2279 −107.1892 −159.5151 | CCCCCNC | −0.5256 −77.1639 −221.8958 | |
006305-98 | 0.56197 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −221.8958 −0.5256 −77.1639 | |
006305-105 | 0.56351 | SOONCCC | −37.2279 −107.1892 −159.5151 | CCCCCNC | −221.8958 −0.5256 −77.1639 | |
006305-110 | 0.56356 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −211.504 −2.4671 −82.2841 | |
006305-138 | 0.50276 | SOONCCC | −37.2279 −107.1892 −159.5151 | NCOCCCC | −1.4469 −210.87 −83.7564 | |
006305-163 | 0.59418 | SONCCC | −37.2279 −107.1892 −159.5151 | CCCCNC | −0.0058 −216.4546 −93.9712 | |
006305-186 | 0.49257 | OOCCC | −37.2279 −107.1892 −159.5151 | CCCCC | −48.5216 −239.5349 −13.6686 | |
006305-188 | 0.48355 | SONCCC | −37.2279 −107.1892 −159.5151 | CNCCCC | −13.6686 −239.5349 −48.5216 | |
006305-199 | 0.49257 | OOCCC | −37.2279 −107.1892 −159.5151 | CCCCC | −48.5216 −13.6686 −239.5349 | |
006305-200 | 0.47666 | SOOCCC | −37.2279 −107.1892 −159.5151 | CCNCCC | −239.5349 −48.5216 −13.6686 | |
006306-26 | 0.59343 | SOONCCC | −37.2279 −107.1892 −159.5151 | OCCNCCC | −187.941 −40.4448 −79.4912 | |
006306-106 | 0.68164 | SOCCC | −5.2465 −88.3648 −122.3962 | NCCCC | −20.4327 −39.2382 −155.9536 | |
006306-141 | 0.57733 | OONCCC | −5.2465 −88.3648 −122.3962 | CNCCCC | −18.3555 −160.9526 −36.9999 | |
006306-175 | 0.54571 | SOOCCC | −28.5971 −38.2796 −135.5565 | COOCNC | −28.3736 −66.0039 −109.0218 | |
006306-181 | 0.54665 | SOOCCC | −28.5971 −38.2796 −135.5565 | OCNCOC | −28.3736 −66.0039 −109.0218 | |
006306-183 | 0.54571 | SOOCCC | −28.5971 −38.2796 −135.5565 | COOCNC | −109.0218 −28.3736 −66.0039 | |
006306-226 | 0.56045 | SOONCCC | −28.9822 −86.0507 −136.5352 | OCCNCCC | −152.9247 −33.7788 −64.0308 | |
006322-2 | 0.55916 | SOOCCC | −28.5971 −38.2796 −135.5565 | COOCNC | −27.3384 −62.6263 −111.6846 | |
006322-19 | 0.4956 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −158.5429 −38.7577 −80.7785 | |
006322-42 | 0.5614 | SOOCCC | −28.5971 −38.2796 −135.5565 | OCNCOC | −27.3384 −62.6263 −111.6846 | |
006322-44 | 0.46472 | SOOCCC | −28.5971 −38.2796 −135.5565 | NOOCCC | −111.6846 −27.3384 −62.6263 | |
006322-56 | 0.49042 | ONCCC | −28.9822 −86.0507 −136.5352 | CNCNC | −221.7222 −6.933 −23.1061 | |
006322-60 | 0.4524 | SNCC | −28.9822 −86.0507 −136.5352 | NCNC | −221.7222 −23.1061 −6.933 | |
006322-69 | 0.51145 | SOOCCC | −28.9822 −86.0507 −136.5352 | NCCNCC | −221.7222 −6.933 −23.1061 | |
006322-90 | 0.4613 | SOONCCC | −28.9822 −86.0507 −136.5352 | COCNCCC | −204.5901 −27.1111 −18.7144 | |
033032-13 | 0.56115 | SOONCCC | −37.2279 −107.1892 −159.5151 | COONCCC | −157.6594 −87.1404 −38.0414 | |
033032-66 | 0.45269 | SOONCCC | −31.8416 −89.3906 −126.7171 | COONCCC | −12.4748 −35.4453 −199.7397 | |
033032-69 | 0.51437 | SOCCC | −31.8416 −89.3906 −126.7171 | OCCOC | −199.7397 −35.4453 −12.4748 | |
033032-74 | 0.45269 | SOONCCC | −31.8416 −89.3906 −126.7171 | COONCCC | −199.7397 −12.4748 −35.4453 | |
145742-21 | 0.59575 | SOOCCC | −37.2279 −107.1892 −159.5151 | COOCNC | −24.7574 −57.3704 −227.05 | |
145742-28 | 0.53132 | SONCCC | −11.1453 −70.4461 −121.9608 | CCCCCN | −145.192 −12.4766 −45.8437 | |
145742-29 | 0.52833 | OONCCC | −11.1453 −70.4461 −121.9608 | OCNCCC | −45.8437 −145.192 −12.4766 | |
145742-43 | 0.48734 | SOCCC | −11.1453 −70.4461 −121.9608 | CCNCC | −145.192 −45.8437 −12.4766 |
References
- Dong, R.; Pan, S.; Peng, Z.; Zhang, Y.; Yang, J. MTM-ALIGN: A server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res. 2018, 46, 380–386. [Google Scholar] [CrossRef]
- Zhao, C.; Sacan, A. UniAlign: Protein structure alignment meets evolution. Bioinformatics 2015, 31, 3139–3146. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Holm, L. Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 2009, 19, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Kolodny, R.; Koehl, P.; Levitt, M. Comprehensive evaluation of protein structure alignment methods: Scoring by geometric measures. J. Mol. Biol. 2005, 346, 1173–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terashi, G.; Takeda-Shitaka, M. CAB-Align: A flexible protein structure alignment method based on the residue-residue contact area. PLoS ONE 2015, 10, e0141440. [Google Scholar] [CrossRef] [PubMed]
- Akdel, M.; Durairaj, J.; de Ridder, D.; van Dijk, A.D.J. Caretta-A multiple protein structure alignment and feature extraction suite. comput. struct. Biotechnol. J. 2020, 18, 981–992. [Google Scholar] [CrossRef]
- Holm, L. Using dali for protein structure comparison. In Structural Bioinformatics; Gáspári, Z., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2112, pp. 29–42. ISBN 978-1-07-160269-0. [Google Scholar]
- Hu, J.; Liu, Z.; Yu, D.-J.; Zhang, Y. LS-Align: An atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening. Bioinformatics 2018, 34, 2209–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, M.; Berger, B.; Cowen, L. Matt: Local flexibility aids protein multiple structure alignment. PLoS Comput. Biol. 2008, 4, 88–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. TM-Align: A protein structure alignment algorithm based on the tm-Score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Chen, W.; Yao, C.; Guo, Y.; Wang, Y.; Xue, Z. PmTM-Align: Scalable pairwise and multiple structure alignment with apache spark and openmp. BMC Bioinform. 2020, 21, 426. [Google Scholar] [CrossRef]
- Shegay, M.V.; Suplatov, D.A.; Popova, N.N.; Švedas, V.K.; Voevodin, V.V. ParMATT: Parallel multiple alignment of protein 3D-structures with translations and twists for distributed-memory systems. Bioinformatics 2019, 35, 4456–4458. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Peng, Z.; Zhang, Y.; Yang, J. MTM-Align: An algorithm for fast and accurate multiple protein structure alignment. Bioinformatics 2018, 34, 1719–1725. [Google Scholar] [CrossRef] [Green Version]
- Holm, L. DALI and the persistence of protein shape. Protein Sci. 2020, 29, 128–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäntschi, L. The eigenproblem translated for alignment of molecules. Symmetry 2019, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, M.; Ma, J.; Liu, X.; Kobbelt, L.; Bao, H. Spectral quadrangulation with orientation and alignment control. In Proceedings of the ACM SIGGRAPH Asia 2008 Papers, Singapore, 10–13 December 2018; Hart, J.C., Ed.; Association for Computing Machinery: New York, NY, USA, 2008; Volume 147, pp. 1–9. [Google Scholar]
- Norrdine, A.; Kasmi, Z.; Ahmed, K.; Motzko, C.; Schiller, J. MQTT-Based Surveillance System of IoT Using UWB Real Time Location System. In Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Rhodes, Greece, 2–6 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 216–221. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, X.; Jimenez, F.; Deng, Y. A new record of graph enumeration enabled by parallel processing. Mathematics 2019, 7, 1214. [Google Scholar] [CrossRef] [Green Version]
- Medina, L.; Nina, H.; Trigo, M. On distance signless laplacian spectral radius and distance signless laplacian energy. Mathematics 2020, 8, 792. [Google Scholar] [CrossRef]
- Hayat, S.; Khan, S.; Khan, A.; Liu, J.-B. Valency-based molecular descriptors for measuring the π-electronic energy of lower polycyclic aromatic hydrocarbons. Polycycl. Aromat. Compd. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Hayat, S.; Khan, S. Quality testing of spectrum-based valency descriptors for polycyclic aromatic hydrocarbons with applications. J. Mol. Struct. 2021, 1228, 129789. [Google Scholar] [CrossRef]
- Tomescu, M.A.; Jäntschi, L.; Rotaru, D.I. Figures of graph partitioning by counting, sequence and layer matrices. Mathematics 2021, 9, 1419. [Google Scholar] [CrossRef]
- Jukic, S.; Saracevic, M.; Subasi, A.; Kevric, J. Comparison of ensemble machine learning methods for automated classification of focal and non-focal epileptic EEG signals. Mathematics 2020, 8, 1481. [Google Scholar] [CrossRef]
- Zhang, C.; Pei, D. Generalized bertrand curves in minkowski 3-space. Mathematics 2020, 8, 2199. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Dashtian, Z.; Weber, G.-W.; Tomaskova, H.; Soltani, M.; Mousavi, N.S. An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness worthiness. Mathematics 2021, 9, 1304. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, Y.; Jiang, Z.; Shon, S. A study of determinants and inverses for periodic tridiagonal toeplitz matrices with perturbed corners involving mersenne numbers. Mathematics 2019, 7, 893. [Google Scholar] [CrossRef] [Green Version]
- Gasiński, L.; Papageorgiou, N.S. Resonant anisotropic (p,q)-equations. Mathematics 2020, 8, 1332. [Google Scholar] [CrossRef]
- Moaaz, O.; Furuichi, S.; Muhib, A. New comparison theorems for the nth order neutral differential equations with delay inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Kamran, K.; Shah, Z.; Kumam, P.; Alreshidi, N.A. A meshless method based on the laplace transform for the 2D multi-term time fractional partial integro-differential equation. Mathematics 2020, 8, 1972. [Google Scholar] [CrossRef]
- Sharma, J.R.; Kumar, S.; Jäntschi, L. On a class of optimal fourth order multiple root solvers without using derivatives. Symmetry 2019, 11, 1452. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Sharma, J.R.; Jäntschi, L. A novel family of efficient weighted-newton multiple root iterations. Symmetry 2020, 12, 1494. [Google Scholar] [CrossRef]
Dx | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 0 | 0.010 | 0.001 | 0.018 | 0.022 |
2 | −0.010 | 0 | −0.008 | 0.008 | 0.013 |
3 | −0.001 | 0.008 | 0 | 0.017 | 0.021 |
4 | −0.018 | −0.008 | −0.017 | 0 | 0.004 |
5 | −0.022 | −0.013 | −0.021 | −0.004 | 0 |
Dy | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 0 | 1.951 | 0.738 | −0.130 | 0.726 |
2 | −1.951 | 0 | −1.212 | −2.080 | −1.224 |
3 | −0.738 | 1.212 | 0 | −0.868 | −0.012 |
4 | 0.130 | 2.080 | 0.868 | 0 | 0.856 |
5 | −0.726 | 1.224 | 0.012 | −0.856 | 0 |
Dz | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 0 | −1.165 | −3.549 | −2.383 | −1.146 |
2 | 1.165 | 0 | −2.384 | −1.218 | 0.019 |
3 | 3.549 | 2.384 | 0 | 1.166 | 2.403 |
4 | 2.383 | 1.218 | −1.166 | 0 | 1.236 |
5 | 1.146 | −0.019 | −2.403 | −1.236 | 0 |
x₁ | x₂ | x₃ | x₄ | x₅ | |
---|---|---|---|---|---|
[Dx] | 6.065i | −6.065i | 0 | 0 | 0 |
[Dy] | 3.698i | −3.698i | 0 | 0 | 0 |
[Dz] | 0.044i | −0.044i | 0 | 0 | 0 |
Matrix (A) | |λ·I−A| Polynomial |
---|---|
[Dx] | λ3∙(λ2 + 36.7783) |
[Dy] | λ3∙(λ2 + 13.6746) |
[Dz] | λ3∙(λ2 + 0.0019791) |
Possible Atom Choices | ST | |||||
---|---|---|---|---|---|---|
1 | O2 | N3 | C4 | C5 | C6 | −103.395 |
2 | O1 | N3 | C4 | C5 | C6 | −107.168 |
3 | O1 | O2 | C4 | C5 | C6 | −102.657 |
4 | O1 | O2 | N3 | C5 | C6 | −134.779 |
5 | O1 | O2 | N3 | C4 | C6 | −101.514 |
6 | O1 | O2 | N3 | C4 | C5 | −136.012 |
3D Views of Alignment | Aligned Structure and Index | TM-Score | Selected Atoms from 000750 | Selected Atoms from the Aligned Structure |
---|---|---|---|---|
006305-1 | 0.80948 | OONCC | CCCCC | |
006305-4 | 0.66756 | OONCC | OONCC | |
006305-42 | 0.7386 | OONCC | CCNCC | |
033032-69 | 0.96492 | OONCC | OOCCC | |
033032-115 | 0.93477 | OONCC | OONCC |
3D Views of Alignment | Aligned Structure and Index | TM-Score | Selected Atoms from 000750 | Selected Atoms from the Aligned Structure |
---|---|---|---|---|
005950-248 | 0.60276 | OONCC | OOCCC | |
005950-269 | 0.56223 | OONCC | OONCC | |
006287-1 | 0.44763 | SOONCCC | COONCCC | |
006287-10 | 0.50113 | ONCCC | COCNC | |
006288-1 | 0.48391 | SOONCCC | OOONCCC | |
006288-13 | 0.51827 | SONCCC | NCOCCC | |
006288-26 | 0.5201 | SOOCCC | OCOCCC | |
006288-28 | 0.51827 | SONCCC | NCOCCC | |
006322-19 | 0.4956 | SOONCCC | COONCCC | |
006322-42 | 0.5614 | SOOCCC | OCNCOC | |
006322-69 | 0.51145 | SOOCCC | NCCNCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joiţa, D.-M.; Tomescu, M.A.; Bàlint, D.; Jäntschi, L. An Application of the Eigenproblem for Biochemical Similarity. Symmetry 2021, 13, 1849. https://doi.org/10.3390/sym13101849
Joiţa D-M, Tomescu MA, Bàlint D, Jäntschi L. An Application of the Eigenproblem for Biochemical Similarity. Symmetry. 2021; 13(10):1849. https://doi.org/10.3390/sym13101849
Chicago/Turabian StyleJoiţa, Dan-Marian, Mihaela Aurelia Tomescu, Donatella Bàlint, and Lorentz Jäntschi. 2021. "An Application of the Eigenproblem for Biochemical Similarity" Symmetry 13, no. 10: 1849. https://doi.org/10.3390/sym13101849
APA StyleJoiţa, D. -M., Tomescu, M. A., Bàlint, D., & Jäntschi, L. (2021). An Application of the Eigenproblem for Biochemical Similarity. Symmetry, 13(10), 1849. https://doi.org/10.3390/sym13101849