On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus
Abstract
:1. Introduction
2. Quantum Derivatives and Integrals
3. Post-Quantum Derivatives and Integrals
4. New H-H Type Inequalities for Post-Quantum Integrals
- 1.
- Let us consider then and
- 2.
- Let . Then, and
- 3.
- Finally, let . Then, and
5. Midpoint Type Inequalities through ()-Integral
6. Trapezoidal Type Inequalities through ()-Integral
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.A.; Valdes, J.E.N.; Kashuri, A.; Zhang, Z. Fractional non conformable Hermite-Hadamard inequalities for generalized ϕ-convex functions. Fasc. Math. 2020, 64, 5–16. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Melbourne, VIC, Australia, 2000. [Google Scholar]
- Vivas-Cortez, M.; Korus, P.; Napoles Valdes, J.E. Some generalized Hermite-Hadamard-Fejer inequality for convex functions. Adv. Differ. Equ. 2021, 2021, 199. [Google Scholar] [CrossRef]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Napoles Valdes, J.E.; Rabossi, F.; Samaniego, A.D. Convex functions: Ariadne’s thread or Charlotte’s spiderweb? Adv. Math. Model. Appl. 2020, 5, 176–191. [Google Scholar]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1998, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Pini, R. Invexity and generalized convexity. Optimization 1991, 22, 513–525. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Some new classes of nonconvex functions. Nonlinear Funct. Anal. Appl. 2006, 11, 165–171. [Google Scholar]
- Noor, M.A. On Hadamard integral inequalities invoving two log-preinvex functions. J. Inequal. Pure Appl. Math. 2007, 8, 1–6. [Google Scholar]
- Noor, M.A. Hadamard integral inequalities for product of two preinvex function. Nonlinear Anal. Forum 2009, 14, 167–173. [Google Scholar]
- Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. RGMIA Res. Rep. Coll. 2011, 14, 64. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ. Hermite-Hadamard’s inequalities for preinvex function via fractional integrals and related fractional inequalities. Am. J. Mat. Anal. 2013, 1, 33–38. [Google Scholar]
- Awan, M.U.; Talib, S.; Noor, M.A.; Chu, Y.-M.; Noor, K.I. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order. J. Funct. Spaces 2020, 2020, 9154139. [Google Scholar] [CrossRef]
- Du, T.S.; Liao, J.G.; Li, Y.J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Shoaib, M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and α,m-preinvex functions. J. Egypt. Math. Soc. 2015, 23, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Matloka, M. Relative h-preinvex functions and integral inequalities. Georgian Math. J. 2020, 27, 285–295. [Google Scholar] [CrossRef]
- Mehmood, S.; Zafar, F.; Yasmeen, N. Hermite-Hadamard-Fejér type inequalities for preinvex functions using fractional integrals. Mathematics 2019, 7, 467. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O. New integral inequalities for preinvex functions via generalized beta function. J. Interdiscip. 2019, 22, 539–549. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Özcan, S. Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math. 2020, 5, 1505–1518. [Google Scholar] [CrossRef]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.-M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Sun, W. Some Hermite–Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications. Adv. Differ. Equ. 2020, 2020, 426. [Google Scholar] [CrossRef]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bokulich, A.; Jaeger, G. Philosophy of Quantum Information Theory and Entaglement; Cambridge Uniersity Press: Cambridge, UK, 2010. [Google Scholar]
- Ernst, T. The History Of Q-Calculus And New Method; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 1–21. [Google Scholar]
- Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 1–12. [Google Scholar]
- Chu, Y.-M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right p,q-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qπ2-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Ali, M.A.; Alp, N.; Budak, H.; Chu, Y.-M.; Zhang, Z. On some new quantum midpoint type inequalities for twice quantum differentiable convex functions. Open Math. 2021, 19, 427–439. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 2021, 40, 199–215. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hefeng, Z. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Ali, M.A.; Chu, Y.-M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 25. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.-M. Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 427–439. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Alp, N.; Chu, Y.-M. Quantum Ostrowski type integral inequalities. J. Math. Inequal. 2021, in press. [Google Scholar]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. p,q-Hermite-Hadamard inequalities and p,q-estimates for midpoint inequalities via convex quasi-convex functions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A. Matemáticas 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; İşcan, İ. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agarwal, P. Some New Hermite–Hadamard and Related Inequalities for Convex Functions via p,q-Integral. Entropy 2021, 23, 828. [Google Scholar] [CrossRef]
- Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 2021, 1666. [Google Scholar] [CrossRef]
- Pavić, Z.; Wu, S.; Novoselac, V. Important inequalities for preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3570–3579. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sial, I.B.; Ali, M.A.; Murtaza, G.; Ntouyas, S.K.; Soontharanon, J.; Sitthiwirattham, T. On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus. Symmetry 2021, 13, 1864. https://doi.org/10.3390/sym13101864
Sial IB, Ali MA, Murtaza G, Ntouyas SK, Soontharanon J, Sitthiwirattham T. On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus. Symmetry. 2021; 13(10):1864. https://doi.org/10.3390/sym13101864
Chicago/Turabian StyleSial, Ifra Bashir, Muhammad Aamir Ali, Ghulam Murtaza, Sotiris K. Ntouyas, Jarunee Soontharanon, and Thanin Sitthiwirattham. 2021. "On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus" Symmetry 13, no. 10: 1864. https://doi.org/10.3390/sym13101864
APA StyleSial, I. B., Ali, M. A., Murtaza, G., Ntouyas, S. K., Soontharanon, J., & Sitthiwirattham, T. (2021). On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus. Symmetry, 13(10), 1864. https://doi.org/10.3390/sym13101864