Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses
Abstract
:1. Introduction
2. Performance of Experiments
3. Plasma Hydrodynamics for PMMA Targets
4. An Origin of the Crown Ending the Capillary Channel in PMMA
5. Monte Carlo Simulation of e-Beam Degradation in PMMA Targets
6. The Modeling Experiments on Electron Acceleration in the PMMA Target with Preliminary Drilled Capillary
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basov, N.G.; Krokhin, O.N. Condition for heating up of a plasma by the radiation from an optical generator. Sov. Phys. JETP 1964, 19, 123–125. [Google Scholar]
- Max, C.E.; McKee, C.F.; Mead, W.C. A model for laser driven ablative implosions. Phys. Fluids 1980, 23, 1620–1645. [Google Scholar] [CrossRef]
- Mora, P. Theoretical model of absorption of laser light by a plasma. Phys. Fluids 1982, 25, 1051–1056. [Google Scholar] [CrossRef]
- Manheimer, W.M.; Colombant, D.G.; Gardner, J.H. Steady-state planar ablative flow. Phys. Fluids 1982, 25, 1644–1652. [Google Scholar] [CrossRef] [Green Version]
- Fabbro, R.; Max, C.; Fabre, E. Planar laser-driven ablation: Effect of inhibited electron thermal conduction. Phys. Fluids 1985, 28, 1463–1481. [Google Scholar] [CrossRef]
- Dahmani, F.; Kerdja, T. Planar laser-driven ablation model for nonlocalized absorption. Phys. Fluids B Plasma Phys. 1991, 3, 1232–1240. [Google Scholar] [CrossRef]
- Meyer, B.; Thiell, G. Experimental scaling laws for ablation parameters in plane target–laser interaction with 1.06 μm and 0.35 μm laser wavelengths. Phys. Fluids 1984, 27, 302–311. [Google Scholar] [CrossRef]
- Basko, M.M.; Novikov, V.G.; Grushin, A.S. On the structure of quasi-stationary laser ablation fronts in strongly radiating plasmas. Phys. Plasmas 2015, 22, 053111. [Google Scholar] [CrossRef] [Green Version]
- Nuckolls, J.; Wood, L.; Thiessen, A.; Zimmerman, G. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature 1972, 239, 139–142. [Google Scholar] [CrossRef]
- Craxton, R.S.; Anderson, K.S.; Boehly, T.R.; Goncharov, V.N.; Harding, D.R. Direct-drive inertial confinement fusion: A review. Phys. Plasmas 2015, 22, 110501. [Google Scholar] [CrossRef] [Green Version]
- Tabak, M.; Hammer, J.; Glinsky, M.E.; Kruer, W.L.; Wilks, S.C. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1994, 1, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Betti, R.; Zhou, C.D.; Anderson, K.S.; Perkins, L.J.; Theobald, W.; Solodov, A.A. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 2007, 98, 155001. [Google Scholar] [CrossRef] [Green Version]
- Tikhonchuk, V.T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion 2019, 59, 032001. [Google Scholar] [CrossRef]
- Grun, J.; Decoste, R.; Ripin, B.H.; Gardner, J. Characteristics of ablation plasma from planar, laser-driven targets. Appl. Phys. Lett. 1981, 39, 545–547. [Google Scholar] [CrossRef]
- Key, M.H.; Toner, W.T.; Goldsack, T.J.; Kilkenny, J.D.; Veats, S.A. A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm. Phys. Fluids 1983, 26, 2011–2026. [Google Scholar] [CrossRef]
- Ng, A.; Pasini, D.; Celiiers, P.; Parfeniuk, L.; DaSilva, D.; Kwan, J. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption. Appl. Phys. Lett. 1984, 45, 1046–1048. [Google Scholar] [CrossRef]
- Boehly, T.; Tanaka, K.A.; Mochizuki, T.; Yamanaka, C. Measurements of mass ablation rate and pressure in planar targets irradiated by 0.27-μm laser light. J. Appl. Phys. 1986, 60, 3840–3844. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, F. Ablation scaling in laser-produced plasmas with laser intensity, laser wavelength, and target atomic number. Phys. Fluids B Plasma Phys. 1992, 4, 1585–1588. [Google Scholar] [CrossRef]
- Dahmani, F. Experimental scaling laws for mass-ablation rate, ablation pressure in planar laser-produced plasmas with laser intensity, laser wavelength, and target atomic number. J. Appl. Phys. 1993, 74, 622–634. [Google Scholar] [CrossRef]
- Zvorykin, V.D.; Lebo, I.G. Laser and target experiments on KrF GARPUN laser installation at FIAN. Laser Part Beams 1999, 17, 69–88. [Google Scholar] [CrossRef]
- Zvorykin, V.D.; Bakaev, V.G.; Korol, V.Y.; Lebo, I.G.; Rozanov, V.B.; Sychugov, G.V. Effects of anomalous high penetration rate of high-power KrF laser radiation throughout the solid matter and shock-induced graphite-diamond phase transformation. Proc. SPIE 2000, 3885, 212–222. [Google Scholar] [CrossRef]
- Zvorykin, V.D.; Bakaev, V.G.; Lebo, I.G.; Sychugov, G.V. Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser. Laser Part. Beams 2004, 22, 51–57. [Google Scholar] [CrossRef]
- Srinivasan, R.; Braren, B.R.; Dreyfus, W.; Seeger, D.E. Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: Laser-induced fluorescence analysis, chemical analysis, and doping studies. J. Opt. Soc. Am. B 1986, 3, 785–791. [Google Scholar] [CrossRef]
- Philipp, H.R.; Cole, H.S.; Liu, Y.S.; Sitnik, T.A. Optical absorption of some polymers in the region 240–170 nm. Appl. Phys. Lett. 1986, 48, 192–194. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.M.; Gower, M.C. Time resolved transmission studies of poly(methyl methacrylate) films during ultraviolet laser ablative photodecomposition. J. Appl. Phys. 1987, 61, 2090–2092. [Google Scholar] [CrossRef]
- Najeeb, H.N.; Balakit, A.A.; Wahab, G.A.; Kodeary, A.K. Study of the optical properties of poly (methyl methacrylate) (PMMA) doped with a new diarylethen compound. Acad. Res. Int. 2014, 5, 48–56. [Google Scholar]
- Zvorykin, V.D.; Lebo, I.G.; Shutov, A.V.; Ustinovskii, N.N. Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF. Matter Radiat. Extremes. 2020, 5, 035401. [Google Scholar] [CrossRef]
- Lebo, I.G. About the modeling of light beam self-focusing in plasma at the irradiation of the target by power UV laser. Russ. Technol. J. 2021, 9, 79–86. (In Russian) [Google Scholar] [CrossRef]
- Tajima, T. High-energy laser plasma accelerators. Laser Part. Beams 1985, 3, 351–413. [Google Scholar] [CrossRef]
- Cros, B.; Courtois, C.; Matthieussent, G.; Di Bernardo, A.; Batani, D. Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding. Phys. Rev. E 2002, 65, 026405. [Google Scholar] [CrossRef] [PubMed]
- Spence, D.J.; Butler, A.; Hooker, S.M. First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 4103–4112. [Google Scholar] [CrossRef]
- Layer, B.D.; Palastro, J.P.; York, A.G.; Antonsen, T.M.; Milchberg, H.M. Slow wave plasma structures for direct electron acceleration. New J. Phys. 2010, 12, 095011. [Google Scholar] [CrossRef]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285. [Google Scholar] [CrossRef]
- Zvorykin, V.D.; Arlantsev, S.V.; Bakaev, V.G. Transport of electron beams and stability of optical windows in high-power e-beam-pumped krypton fluoride lasers. Laser Part. Beams 2001, 19, 609–622. [Google Scholar] [CrossRef]
- Zvorykin, V.D.; Arlantsev, S.V.; Shutov, A.V.; Smetanin, I.V.; Ustinovskii, N.N. Delivery of the laser beam and transmissive optics degradation in KrF-based shock ignition inertial fusion energy approach. In Pathways to Energy from Inertial Fusion: Structural Materials for Inertial Fusion Facilities, IAEA-TECDOC-1911; International Atomic Energy Agency: Vienna, Austria, 2020; pp. 240–268. [Google Scholar]
- EPICS2014 Electron and Photon Interaction Cross Sections. Available online: https://www-nds.iaea.org/epics2014/ (accessed on 1 September 2014).
- Zvorykin, V.D.; Ustinovskii, N.N.; Shutov, A.V.; Lebo, I.G. Getting Long Ablation Channels in PMMA with Aspect Ratio ~1000 and Their Use in Experiments with Powerful KrF Laser Pulses. In Proceedings of the XVIII International Seminar “Mathematical Models & Modeling in Laser-Plasma Processes & Advanced Science Technologies”–LPpM3-2019, Petrovac, Montenegro, 29 September 2019; pp. 132–133. Available online: https://lppm3.ru/en/ (accessed on 1 September 2019).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zvorykin, V.D.; Arlantsev, S.V.; Shutov, A.V.; Ustinovskii, N.N.; Veliev, P.V. Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses. Symmetry 2021, 13, 1883. https://doi.org/10.3390/sym13101883
Zvorykin VD, Arlantsev SV, Shutov AV, Ustinovskii NN, Veliev PV. Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses. Symmetry. 2021; 13(10):1883. https://doi.org/10.3390/sym13101883
Chicago/Turabian StyleZvorykin, Vladimir D., Sergei V. Arlantsev, Alexey V. Shutov, Nikolay N. Ustinovskii, and Polad V. Veliev. 2021. "Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses" Symmetry 13, no. 10: 1883. https://doi.org/10.3390/sym13101883
APA StyleZvorykin, V. D., Arlantsev, S. V., Shutov, A. V., Ustinovskii, N. N., & Veliev, P. V. (2021). Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses. Symmetry, 13(10), 1883. https://doi.org/10.3390/sym13101883