Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers
Abstract
:1. Introduction
2. Main Results
3. Examples
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockett, M.A. Sums of the inverses of binomial coefficients. Fib. Quart. 1981, 19, 433–445. [Google Scholar]
- Sprugnoli, R. Sums of reciprocals of the central binomial coefficients. Integers 2006, 6, #A27. [Google Scholar]
- Gould, H.W. Combinatorial Identities, revised edition; West Virginia University: Morgantown, WV, USA, 1972. [Google Scholar]
- Staver, T.B. Om summasjon av potenser av binomial koeffisienten. Nor. Mat. Tidsskr. 1947, 29, 97–103. [Google Scholar]
- Pla, J. The sum of inverses of binomial coefficients revisited. Fib. Quart. 1997, 35, 342–345. [Google Scholar]
- Trif, T. Combinatorial sums and series involving the inverses of binomial coefficients. Fib. Quart. 2000, 38, 79–84. [Google Scholar]
- Sury, B. Sum of the reciprocals of the binomial coefficients. Eur. J. Combin. 1993, 14, 351–353. [Google Scholar] [CrossRef] [Green Version]
- Mansour, T. Combinatorial identities and inverse binomial coefficients. Adv. Appl. Math. 2002, 28, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Sury, B.; Wang, T.; Zhao, F.Z. Some identities involving reciprocals of binomial coefficient. J. Integer Seq. 2004, 7, 3. [Google Scholar]
- Jin, H.T.; Du, D.K. Abel’s lemma and identities on harmonic numbers. Integers 2015, 15, 2. [Google Scholar]
- Batır, N. Combinatorial identities involving harmonic numbers. Integers 2020, 20, 2. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics, 2nd ed.; Addison-Wesley: New York, NY, USA, 1994. [Google Scholar]
- Belbachir, H.; Rahmani, M. Alternating sums of the reciprocals of binomial coefficients. J. Integer Seq. 2012, 15, 3. [Google Scholar]
- Witula, R. Finite sums connected with the inverses of central binomial numbers and Catalan numbers. Assian-Eur. J. Math. 2008, 1, 439–448. [Google Scholar] [CrossRef]
- Witula, R.; Slota, D.; Watlak, J.; Chmielowska, A.; Rózański, M. Matrix methods in evaluation of integrals. J. Appl. Math. Comput. Mech. 2020, 19, 103–112. [Google Scholar] [CrossRef]
- Duren, P. Invitation to Classical Analysis; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Waltham, MA, USA, 2012. [Google Scholar]
- Campbell, J.M. Identities for finite sums involving central binomial coefficients and harmonic-type numbers. Unpublished work. 2020. [Google Scholar]
- Sofo, A. New classes of harmonic number identities. J. Integer Seq. 2012, 15, 12. [Google Scholar]
- Sofo, A.; Cvijović, D. Extensions of Euler harmonic sums. Appl. Anal. Discrete Math. 2012, 6, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Sofo, A. Shifted harmonic sums of order two. Commun. Korean Math. Soc. 2014, 29, 239–255. [Google Scholar] [CrossRef]
- Batır, N. Finite binomial sum identities with harmonic numbers. J. Integer Seq. 2021, 24, 3. [Google Scholar]
- Sprugnoli, R. Alternating weighted sums of inverse of binomial coefficients. J. Integer Seq. 2012, 15, 3. [Google Scholar]
- Belbachir, H.; Rahmani, M. Sury, Sums involving moments of reciprocals of binomial coefficients. J. Integer Seq. 2011, 14, 16. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batir, N.; Sofo, A. Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers. Symmetry 2021, 13, 2002. https://doi.org/10.3390/sym13112002
Batir N, Sofo A. Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers. Symmetry. 2021; 13(11):2002. https://doi.org/10.3390/sym13112002
Chicago/Turabian StyleBatir, Necdet, and Anthony Sofo. 2021. "Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers" Symmetry 13, no. 11: 2002. https://doi.org/10.3390/sym13112002
APA StyleBatir, N., & Sofo, A. (2021). Finite Sums Involving Reciprocals of the Binomial and Central Binomial Coefficients and Harmonic Numbers. Symmetry, 13(11), 2002. https://doi.org/10.3390/sym13112002