Information Limits for Community Detection in Hypergraph with Label Information
Abstract
:1. Introduction
2. Main Result
2.1. Detection with Noisy Label Information
2.2. Detection with Partially Observed Labels
3. Proof of Main Result
Proof of Theorem 1
Algorithm 1: Algorithm for exact recovery of community structure in hypergraphs with label information. |
1. Input: Hypergraph and label information y; 2. Partition , where , , and make an Erds–Renyi graph generated with an edge probability of ; 3. Apply weak recovery algorithm [12] to to return a partition ; 4. Initialize , and ; 5. Flip membership if and in , or and in ; 6. If , then keep and unchanged. |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Chernoff Bound
- (i)
- (Lemma 15 in [23]) For any ,
- (ii)
- (Generic Chernoff bound ) For any ,
- (iii)
- (Multiplicative Chernoff bound ) For any ,
- (i)
- (ii)
- (Upper bound) Assume with , thenwhen , andwhen . Here, and are defined as in .
Appendix A.2. Proof of Lemma 3
- . then as in (1);
- , then .
Appendix A.3. Proof of Lemma 7
References
- Chen, J.; Yuan, B. Detecting functional modules in the yeast proteinprotein interaction network. Bioinformatics 2006, 22, 2283–2290. [Google Scholar] [CrossRef]
- Costa, L.F.; Oliveira, O.N., Jr.; Travieso, G.; Rodrigues, F.A.; Villas Boas, P.R.; Antiqueira, L.; Viana, M.P.; Correa Rocha, L.E. Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Adv. Phys. 2011, 60, 329–412. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Coauthorship networks and patterns of scientific collaboration. Proc. Natl. Acad. Sci. USA 2004, 101, 5200–5205. [Google Scholar] [CrossRef] [Green Version]
- Ma’ayan, A. Introduction to Network Analysis in Systems Biology. Sci. Signal. 2011, 4, tr5. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Bandeira, A.; Goemans, M. Stochastic Block Model for Hypergraphs: Statistical limits and a semidefinite programming approach. arXiv 2018, arXiv:1807.02884. [Google Scholar]
- Lei, J. A goodness-of-fit test for stochastic block models. Ann. Stat. 2016, 44, 401–424. [Google Scholar] [CrossRef]
- Yuan, M.; Nan, Y. Test dense subgraphs in sparse uniform hypergraph. Commun. Stat.-Theory Methods 2020, 1–20. [Google Scholar] [CrossRef]
- Abbe, E. Community Detection and Stochastic Block Models: Recent Developments. J. Mach. Learn. Res. 2018, 18, 6446–6531. [Google Scholar]
- Agarwal, S.; Branson, K.; Belongie, S. Higher order learning with graphs. In Proceedings of the International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 17–24. [Google Scholar]
- Amini, A.; Chen, A.; Bickel, P. Pseudo-likelihood methods for community detection in large sparse networks. Ann. Stat. 2013, 41, 2097–2122. [Google Scholar] [CrossRef]
- Ahn, K.; Lee, K.; Suh, C. Hypergraph Spectral Clustering in the Weighted Stochastic Block Model. IEEE J. Sel. Top. Signal Process. 2018, 12, 959–974. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.J.; Sarkar, P. Hypothesis testing for automated community detection in networks. J. R. Stat. Soc. Ser. B 2016, 78, 253–273. [Google Scholar] [CrossRef] [Green Version]
- Ghoshdastidar, D.; Dukkipati, A. Consistency of spectral partitioning of uniform hypergraphs under planted partition model. Adv. Neural Inf. Process. Syst. 2014, 27, 397–405. [Google Scholar]
- Ghoshdastidar, D.; Dukkipati, A. Consistency of spectral hypergraph partitioning under planted partition model. Ann. Stat. 2017, 45, 289–315. [Google Scholar] [CrossRef]
- Ke, Z.; Shi, F.; Xia, D. Community Detection for Hypergraph Networks via Regularized Tensor Power Iteration. arXiv 2020, arXiv:1909.06503. [Google Scholar]
- Kim, S. Higher-order correlation clustering for image segmentation. Adv. Neural Inf. Process. Syst. 2011, 24, 1530–1538. [Google Scholar]
- Yuan, M.; Liu, R.; Feng, Y.; Shang, Z. Testing community structures for hypergraphs. arXiv 2018, arXiv:1810.04617. [Google Scholar]
- Yuan, M.; Shang, Z. Sharp detection boundaries on testing dense subhypergraph. arXiv 2021, arXiv:2101.04584. [Google Scholar]
- Yuan, M.; Shang, Z. Heterogeneous Dense Subhypergraph Detection. arXiv 2021, arXiv:2104.04047. [Google Scholar]
- Yuan, M.; Shang, Z. Information Limits for Detecting a Subhypergraph. arXiv 2021, arXiv:2105.02259. [Google Scholar]
- Abbe, E.; Banderira, A.; Hall, G. Exact Recovery in the Stochastic Block Model. IEEE Trans. Inf. Theory 2016, 62, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Saad, H.; Nosratinia, A. Community detection with side information: Exact recovery under the stochastic block model. IEEE J. Sel. Top. Signal Process. 2018, 12, 944–958. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.T.; Liang, T.; Rakhlin, A. Inference via Message Passing on Partially Labeled Stochastic Block Models. arXiv 2016, arXiv:1603.06923. [Google Scholar]
- Kanade, V.; Mossel, E.; Schramm, T. Global and Local Information in Clustering Labeled Block Models. IEEE Trans. Inf. Theory 2016, 62, 5906–5917. [Google Scholar] [CrossRef]
- Kadavankandy, A.; Avrachenkov, K.; Cottatellucci, L.; Sundaresan, R. The Power of Side-Information in Subgraph Detection. IEEE Trans. Signal Process. 2018, 66, 1905–1919. [Google Scholar] [CrossRef] [Green Version]
- Mossel, E.; Xu, J. Local algorithms for block models with side information. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, 14–16 January 2016; pp. 71–80. [Google Scholar]
- Tudisco, F.; Prokopchik, K.; Benson, A. A nonlinear diffusion method for semi-supervised learning on hypergraphs. arXiv 2021, arXiv:2103.14867. [Google Scholar]
- Tudisco, F.; Benson, A.; Prokopchik, K. Nonlinear Higher-Order Label Spreading. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021. [Google Scholar]
- Whang, J.; Du, R.; Jung, S.; Lee, G.; Drake, B.; Liu, Q.; Kang, S.; Park, H. MEGA: Multi-View Semi-Supervised Clustering of Hypergraphs. Proc. VLDB Endow. 2020, 13, 698–711. [Google Scholar] [CrossRef]
Region Where Noisy Labels Are Observed | Recovery |
and | Exact recovery is impossible |
and | Exact recovery is impossible |
and | Exact recovery is possible |
and | Exact recovery is possible |
Region Where True Labels Are Partially Observed | Recovery |
Exact recovery is impossible | |
Exact recovery is possible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhao, W.; Yuan, M. Information Limits for Community Detection in Hypergraph with Label Information. Symmetry 2021, 13, 2060. https://doi.org/10.3390/sym13112060
Zhao X, Zhao W, Yuan M. Information Limits for Community Detection in Hypergraph with Label Information. Symmetry. 2021; 13(11):2060. https://doi.org/10.3390/sym13112060
Chicago/Turabian StyleZhao, Xiaofeng, Wei Zhao, and Mingao Yuan. 2021. "Information Limits for Community Detection in Hypergraph with Label Information" Symmetry 13, no. 11: 2060. https://doi.org/10.3390/sym13112060
APA StyleZhao, X., Zhao, W., & Yuan, M. (2021). Information Limits for Community Detection in Hypergraph with Label Information. Symmetry, 13(11), 2060. https://doi.org/10.3390/sym13112060