On Nonlinear Forced Impulsive Differential Equations under Canonical and Non-Canonical Conditions
Abstract
:1. Introduction
2. Qualitative Behaviour under the Canonical Operator
3. Qualitative Behaviour under the Noncanonical Operator
4. Sufficient Conditions for Nonoscillation
5. Discussion and Example
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonotto, E.M.; Gimenes, L.P.; Federson, M. Oscillation for a second-order neutral differential equation with impulses. Appl. Math. Comput. 2009, 215, 1–15. [Google Scholar] [CrossRef]
- Bainov, D.D.; Simeonov, P.S. Impulsive Differential Equations: Asymptotic Properties of the Solutions; Series on Advances in Mathematics for Applied Sciences; World Scientific: Singapore, 1995; Volume 28. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Oscillation theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Oscillation and Stability of Delay Models in Biology; Springer International Publishing: New York, NY, USA, 2014. [Google Scholar]
- Pogodaev, N.; Staritsyn, M. Impulsive control of nonlocal transport equations. J. Differ. Equ. 2020, 269, 3585–3623. [Google Scholar] [CrossRef] [Green Version]
- Staritsyn, M. On “discontinuous” continuity equation and impulsive ensemble control. Syst. Control. Lett. 2018, 118, 77–83. [Google Scholar] [CrossRef]
- Berezansky, L.; Domoshnitsky, A.; Koplatadze, R. Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 2021, 34, 315–336. [Google Scholar]
- Viglialoro, G.; Woolley, T.E. Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. Appl. Anal. 2020, 99, 2507–2525. [Google Scholar] [CrossRef] [Green Version]
- Infusino, M.; Kuhlmann, S. Infinite dimensional moment problem: Open questions and applications. Contemp. Math. Amer. Math. Soc. 2017, 697, 187–201. [Google Scholar]
- Shen, J.H.; Wang, Z.C. Oscillation and asymptotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Eqs. 1994, 10, 61–68. [Google Scholar]
- Graef, J.R.; Shen, J.H.; Stavroulakis, I.P. Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl. 2002, 268, 310–333. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zou, Z. Oscillation criteria for first order impulsive differential equations with positive and negative coefficients. J. Comput. Appl. Math. 2008, 217, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Karpuz, B.; Ocalan, O. Oscillation criteria for a class of first-order forced differential equations under impulse effects. Adv. Dyn. Syst. Appl. 2012, 7, 205–218. [Google Scholar]
- Tripathy, A.K.; Santra, S.S. Characterization of a class of second order neutral impulsive systems via pulsatile constant. Differ. Equ. Appl. 2017, 9, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, A.K.; Santra, S.S. Necessary and Sufficient Conditions for Oscillation of a Class of Second Order Impulsive Systems. Differ. Equ. Dyn. Syst. 2018. [Google Scholar] [CrossRef]
- Santra, S.S.; Tripathy, A.K. On oscillatory first order nonlinear neutral differential equations with nonlinear impulses. J. Appl. Math. Comput. 2019, 59, 257–270. [Google Scholar] [CrossRef]
- Santra, S.S.; Dix, J.G. Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral differential equation with impulses. Nonlinear Stud. 2020, 27, 375–387. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses. Kragujev. J. Math. 2020, 47, 81–93. [Google Scholar]
- Ruggieri, M.; Santra, S.S.; Scapellato, A. On nonlinear impulsive differential systems with canonical and non-canonical operators. Appl. Anal. 2021. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Berezansky, L.; Braverman, E. Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear Anal. 1996, 3, 61–77. [Google Scholar]
- Diblik, J.; Svoboda, Z.; Smarda, Z. Retract principle for neutral functional differential equation. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1393–1400. [Google Scholar] [CrossRef]
- Santra, S.S.; Alotaibi, H.; Bazighifan, O. On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Ineq. Appl. 2020, 2020, 256. [Google Scholar] [CrossRef]
- Diblik, J. Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 2017, 72, 16–22. [Google Scholar] [CrossRef]
- Luo, Z.; Jing, Z. Periodic boundary value problem for first-order impulsive functional differential equations. Comput. Math. Appl. 2008, 55, 2094–2107. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yan, J. Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 1997, 207, 388–396. [Google Scholar]
- Tripathy, A.K. Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 2014, 4, 89–101. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Santra, S.S.; Ghosh, A.; Bazighifan, O.; Khedher, K.M.; Nofal, T.A. Second-order impulsive differential systems with mixed and several delays. Adv. Differ. Equ. 2021. [Google Scholar] [CrossRef]
- Santra, S.S.; Baleanu, D.; Khedher, K.M.; Moaaz, O. First-order impulsive differential systems: Sufficient and necessary conditions for oscillatory or asymptotic behavior. Adv. Differ. Equ. 2021. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. (N.S.) 2018, 29, 548–560. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santra, S.S.; Alotaibi, H.; Noeiaghdam, S.; Sidorov, D. On Nonlinear Forced Impulsive Differential Equations under Canonical and Non-Canonical Conditions. Symmetry 2021, 13, 2066. https://doi.org/10.3390/sym13112066
Santra SS, Alotaibi H, Noeiaghdam S, Sidorov D. On Nonlinear Forced Impulsive Differential Equations under Canonical and Non-Canonical Conditions. Symmetry. 2021; 13(11):2066. https://doi.org/10.3390/sym13112066
Chicago/Turabian StyleSantra, Shyam Sundar, Hammad Alotaibi, Samad Noeiaghdam, and Denis Sidorov. 2021. "On Nonlinear Forced Impulsive Differential Equations under Canonical and Non-Canonical Conditions" Symmetry 13, no. 11: 2066. https://doi.org/10.3390/sym13112066
APA StyleSantra, S. S., Alotaibi, H., Noeiaghdam, S., & Sidorov, D. (2021). On Nonlinear Forced Impulsive Differential Equations under Canonical and Non-Canonical Conditions. Symmetry, 13(11), 2066. https://doi.org/10.3390/sym13112066