Image Denoising Using Nonlocal Regularized Deep Image Prior †
Abstract
:1. Introduction
2. Background
2.1. Image Denoising Problem and Iterative Method
2.2. Deep Image Prior
3. Nonlocal Regularized Deep Image Prior for Image Denoising
3.1. The Proposed Model
3.2. Plug-and-Play ADMM Method
Algorithm 1. Nonlocal Regularized Deep Image Prior. |
Input:y, K, , , , , . |
Fork = 0 to K − 1 do
|
4. Experiments
4.1. Subjective Quality Evaluation
4.2. Runtime Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Z.; Xia, K.; He, Z.; Zhang, J.; Wang, S.; Zu, B. Unpaired Image Denoising via Wasserstein GAN in Low-Dose CT Image with Multi-Perceptual Loss and Fidelity Loss. Symmetry 2021, 13, 126. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 2009, 18, 2419–2434. [Google Scholar] [CrossRef] [Green Version]
- Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhu, C. Group Sparsity Residual Constraint with Non-Local Priors for Image Restoration. IEEE Trans. Image Process. 2020, 29, 8960–8975. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, S.; Chen, X.; Li, F. Image Denoising Using a Novel Deep Generative Network with Multiple Target Images and Adaptive Termination Condition. Appl. Sci. 2021, 11, 4803. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, L.; Yang, C. An Entropy-Based Algorithm with Nonlocal Residual Learning for Image Compressive Sensing Recovery. Entropy 2019, 21, 900. [Google Scholar] [CrossRef] [Green Version]
- Vese, L.A.; Osher, S.J. Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions. J. Math. Imaging Vis. 2004, 20, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z. Adaptive singular value decomposition in wavelet domain for image denoising. Pattern Recognit. 2003, 36, 1747–1763. [Google Scholar] [CrossRef]
- Gong, W.; Li, H.; Zhao, D. An Improved Denoising Model Based on the Analysis K-SVD Algorithm. Circuits Syst. Signal Process. 2017, 36, 4006–4021. [Google Scholar] [CrossRef]
- Zha, Z.; Zhang, X.; Wang, Q.; Bai, Y.; Tang, L. Image denoising using group sparsity residual and external nonlocal self-similarity prior. Neurocomputing 2018, 275, 2294–2306. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xiao, S.; Zhao, Y. Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization. Sensors 2020, 20, 5666. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. Image denoising by non-local averaging. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA, 23 March 2005; pp. 25–28. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Li, X. Nonlocal Image Restoration with Bilateral Variance Estimation: A Low-Rank Approach. IEEE Trans. Image Process. 2013, 22, 700–711. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Deng, H.; Tao, J.; Song, X.; Zhang, C. Estimation of the parameters of a weighted nuclear norm model and its application in image denoising. Inf. Sci. 2020, 528, 246–264. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Ma, Y.; Li, X. Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture. Int. J. Comput. Vis. 2015, 114, 217–232. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Trans. Image Process. 2013, 22, 1620–1630. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, L.; Yu, H. External Patch Prior Guided Internal Clustering for Image Denoising. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 603–611. [Google Scholar]
- Feng, W.; Qiao, P.; Chen, Y. Fast and accurate poison denoising with trainable nonlinear diffusion. IEEE Trans. Cybern. 2018, 48, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Chen, Y. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, Y.; Yang, J.; Liu, X. MemNet: A persistent memory network for image restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4549–4557. [Google Scholar]
- Guo, S.; Yan, Z.; Zhang, K.; Zou, W.; Zhang, L. Toward convolutional blind denoising of real photographs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1712–1722. [Google Scholar]
- Tian, C.; Xu, Y.; Li, Z.; Zou, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef]
- Adler, J.; Öktem, O. Learned Primal-Dual Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zuo, W.; Gu, S. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2808–2817. [Google Scholar]
- Dong, W.; Wang, P.; Yin, W.; Shi, G.; Wu, F.; Lu, X. Denoising Prior Driven Deep Neural Network for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2305–2318. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qin, B.; Xiao, J.; Liu, Q.; Wang, Y.; Liang, D. Multi-Channel and Multi-Model-Based Autoencoding Prior for Grayscale Image Restoration. IEEE Trans. Image Process. 2020, 29, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Moon, T. Neural adaptive image denoiser. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2981–2985. [Google Scholar]
- Bora, A.; Price, E.; Dimakis, A.G. Ambientgan: Generative models from lossy measurements. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning image restoration without clean data. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2965–2974. [Google Scholar]
- Lempitsky, V.; Vedaldi, A.; Ulyanov, D. Deep Image Prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454. [Google Scholar]
- Metzler, C.A.; Mousavi, A.; Heckel, R.; Baraniuk, R.G. Unsupervised Learning with Stein’s Unbiased Risk Estimator. arXiv 2018, arXiv:1805.10531. [Google Scholar]
- Liu, J.; Sun, Y.; Xu, X.; Kamilov, U.S. Image restoration using total variation regularized deep image prior. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7715–7719. [Google Scholar]
- Cascarano, P.; Sebastiani, A.; Comes, M.C. ADMM-DIPTV: Combining total variation and deep image prior for image restoration. arXiv 2020, arXiv:2009.11380. [Google Scholar]
- Mataev, G.; Elad, M.; Milanfar, P. DeepRED: Deep Image Prior Powered by RED. arXiv 2020, arXiv:1903.10176. [Google Scholar]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Hong, M.; Luo, Z. On the linear convergence of the alternating direction method of multipliers. Math. Program. 2017, 162, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, S.; Metaxas, D. Efficient MR image reconstruction for compressed MR imaging. Med. Image Anal. 2011, 15, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 2017, 27, 4608–4622. [Google Scholar] [CrossRef] [Green Version]
- Enginoğlu, S.; Erkan, U.; Memiş, S. Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimed. Tools Appl. 2019, 78, 35401–35418. [Google Scholar] [CrossRef]
- Erkan, U.; Thanh, D.N.H.; Hieu, L.M.; Engínoğlu, S. An Iterative Mean Filter for Image Denoising. IEEE Access 2019, 7, 167847–167859. [Google Scholar] [CrossRef]
Filter_Number | Kernel_Size | Input_Depth | Scale_Number | Feature Maps of Skip Layer | Pad |
---|---|---|---|---|---|
128 | 3×3 | 32 | 5 | 4 | “reflection” |
Image | Plane | Lena | Baboon | Peppers | Butterfly | House | Tower | Caps | Avg |
---|---|---|---|---|---|---|---|---|---|
Noise level | |||||||||
NLM | 30.51 | 30.40 | 25.08 | 30.14 | 27.75 | 30.99 | 27.44 | 31.51 | 29.23 |
CBM3D | 32.04 | 31.96 | 25.93 | 31.48 | 28.98 | 32.98 | 28.42 | 32.87 | 30.58 |
FFDNet | 33.07 | 33.24 | 27.15 | 32.06 | 31.55 | 32.64 | 31.41 | 35.31 | 32.05 |
IRCNN | 33.20 | 33.02 | 27.13 | 32.14 | 31.36 | 32.82 | 31.35 | 35.05 | 32.01 |
DIP | 32.96 | 32.47 | 25.64 | 31.58 | 29.30 | 32.33 | 29.65 | 33.68 | 30.95 |
NR-DIP | 33.47 | 32.74 | 26.18 | 31.29 | 30.68 | 32.59 | 29.89 | 33.98 | 31.35 |
Noise level | |||||||||
NLM | 29.62 | 29.45 | 24.25 | 29.18 | 26.95 | 29.96 | 26.48 | 30.55 | 28.31 |
CBM3D | 31.13 | 31.10 | 25.05 | 30.65 | 28.01 | 32.09 | 27.49 | 32.00 | 29.69 |
FFDNet | 32.33 | 32.59 | 26.39 | 31.52 | 30.66 | 32.12 | 30.46 | 34.47 | 31.32 |
IRCNN | 32.27 | 32.31 | 26.37 | 31.45 | 30.45 | 32.17 | 30.36 | 34.14 | 31.19 |
DIP | 31.40 | 31.10 | 25.18 | 30.43 | 29.53 | 30.27 | 28.67 | 32.57 | 29.89 |
NR-DIP | 32.09 | 31.55 | 25.42 | 30.86 | 29.71 | 32.40 | 28.85 | 32.69 | 30.45 |
Noise level | |||||||||
NLM | 28.84 | 28.58 | 23.51 | 28.31 | 26.21 | 29.02 | 25.66 | 29.71 | 27.48 |
CBM3D | 30.38 | 30.30 | 24.30 | 29.81 | 27.20 | 31.41 | 26.68 | 31.23 | 28.91 |
FFDNet | 31.68 | 32.02 | 25.77 | 31.03 | 29.92 | 31.66 | 29.68 | 33.78 | 30.69 |
IRCNN | 31.54 | 31.75 | 25.70 | 30.85 | 29.68 | 31.39 | 29.60 | 33.50 | 30.50 |
DIP | 30.57 | 30.43 | 24.81 | 29.22 | 28.57 | 30.91 | 27.42 | 31.39 | 29.17 |
NR-DIP | 30.96 | 30.65 | 24.78 | 29.79 | 28.76 | 31.61 | 27.78 | 31.88 | 29.53 |
Noise level | |||||||||
NLM | 28.04 | 27.87 | 22.89 | 27.51 | 25.43 | 28.15 | 24.92 | 28.96 | 26.72 |
CBM3D | 29.65 | 29.65 | 23.66 | 29.05 | 26.47 | 30.75 | 26.05 | 30.54 | 28.23 |
FFDNet | 31.12 | 31.52 | 25.24 | 30.59 | 29.29 | 31.25 | 29.01 | 33.19 | 30.15 |
IRCNN | 30.89 | 31.22 | 25.17 | 30.32 | 29.06 | 30.92 | 28.91 | 32.81 | 29.91 |
DIP | 30.06 | 30.04 | 24.29 | 29.15 | 27.92 | 29.73 | 26.30 | 30.56 | 28.50 |
NR-DIP | 30.74 | 30.25 | 24.28 | 29.33 | 28.24 | 30.85 | 27.29 | 30.93 | 28.99 |
Noise level | |||||||||
NLM | 26.55 | 26.51 | 21.88 | 25.97 | 23.77 | 26.40 | 23.69 | 27.64 | 25.30 |
CBM3D | 28.31 | 28.27 | 22.66 | 27.63 | 25.02 | 29.25 | 24.93 | 29.28 | 26.92 |
FFDNet | 30.15 | 30.65 | 24.37 | 29.80 | 28.24 | 30.47 | 27.92 | 32.21 | 29.23 |
IRCNN | 29.81 | 30.30 | 24.29 | 29.38 | 27.96 | 29.81 | 27.85 | 31.85 | 28.91 |
DIP | 28.64 | 28.39 | 22.98 | 27.63 | 26.32 | 28.62 | 25.34 | 29.35 | 27.16 |
NR-DIP | 29.12 | 28.78 | 23.42 | 27.87 | 26.69 | 29.35 | 26.07 | 29.53 | 27.60 |
Noise level | |||||||||
NLM | 24.94 | 25.33 | 21.06 | 24.59 | 21.99 | 24.95 | 22.74 | 26.49 | 24.01 |
CBM3D | 26.87 | 27.06 | 21.82 | 26.32 | 23.68 | 28.11 | 24.07 | 28.09 | 25.75 |
FFDNet | - | - | - | - | - | - | - | - | - |
IRCNN | - | - | - | - | - | - | - | - | - |
DIP | 25.94 | 25.84 | 21.23 | 25.10 | 23.29 | 26.53 | 23.36 | 27.09 | 24.80 |
NR-DIP | 27.49 | 27.52 | 22.40 | 26.47 | 25.21 | 28.21 | 25.15 | 28.22 | 26.33 |
Noise level | |||||||||
NLM | 22.76 | 23.65 | 20.08 | 22.76 | 19.40 | 23.00 | 21.49 | 24.89 | 22.25 |
CBM3D | 24.82 | 25.25 | 20.83 | 24.46 | 21.88 | 25.93 | 22.85 | 26.30 | 24.04 |
FFDNet | - | - | - | - | - | - | - | - | - |
IRCNN | - | - | - | - | - | - | - | - | - |
DIP | 24.20 | 24.35 | 20.07 | 23.29 | 21.43 | 24.27 | 22.37 | 25.36 | 23.17 |
NR-DIP | 24.98 | 25.36 | 21.24 | 24.35 | 23.22 | 25.97 | 23.21 | 26.26 | 24.32 |
Image | Plane | Lena | Baboon | Peppers | Butterfly | House | Tower | Caps | Avg |
---|---|---|---|---|---|---|---|---|---|
Noise level | |||||||||
NLM | 0.8291 | 0.7900 | 0.7238 | 0.7614 | 0.8742 | 0.8014 | 0.7843 | 0.8045 | 0.7961 |
CBM3D | 0.8854 | 0.8470 | 0.7643 | 0.8066 | 0.9112 | 0.8541 | 0.8439 | 0.8709 | 0.8479 |
FFDNet | 0.9120 | 0.8706 | 0.8218 | 0.8429 | 0.9451 | 0.8652 | 0.9079 | 0.9184 | 0.8855 |
IRCNN | 0.9100 | 0.8658 | 0.8218 | 0.8383 | 0.9408 | 0.8633 | 0.9070 | 0.9150 | 0.8828 |
DIP | 0.8504 | 0.8117 | 0.7166 | 0.7734 | 0.8851 | 0.8155 | 0.8287 | 0.8511 | 0.8166 |
NR-DIP | 0.9052 | 0.8611 | 0.7869 | 0.8042 | 0.9304 | 0.8420 | 0.8789 | 0.8930 | 0.8627 |
Noise level | |||||||||
NLM | 0.8099 | 0.7632 | 0.6734 | 0.7376 | 0.8537 | 0.7760 | 0.7400 | 0.7728 | 0.7658 |
CBM3D | 0.8730 | 0.8321 | 0.7216 | 0.7923 | 0.8965 | 0.8426 | 0.8159 | 0.8536 | 0.8285 |
FFDNet | 0.9029 | 0.8612 | 0.7947 | 0.8350 | 0.9369 | 0.8578 | 0.8931 | 0.9067 | 0.8735 |
IRCNN | 0.8979 | 0.8540 | 0.7975 | 0.8252 | 0.9303 | 0.8544 | 0.8910 | 0.9010 | 0.8689 |
DIP | 0.7890 | 0.7596 | 0.6918 | 0.7197 | 0.8818 | 0.7937 | 0.7838 | 0.8121 | 0.7789 |
NR-DIP | 0.8863 | 0.8413 | 0.7597 | 0.7943 | 0.9141 | 0.8409 | 0.8594 | 0.8706 | 0.8458 |
Noise level | |||||||||
NLM | 0.7936 | 0.7366 | 0.6261 | 0.7162 | 0.8347 | 0.7506 | 0.6962 | 0.7446 | 0.7373 |
CBM3D | 0.8611 | 0.8180 | 0.6809 | 0.7793 | 0.8819 | 0.8339 | 0.7888 | 0.8392 | 0.8104 |
FFDNet | 0.8946 | 0.8525 | 0.7694 | 0.8278 | 0.9286 | 0.8517 | 0.8788 | 0.8960 | 0.8624 |
IRCNN | 0.8905 | 0.8455 | 0.7680 | 0.8180 | 0.9216 | 0.8459 | 0.8765 | 0.8906 | 0.8571 |
DIP | 0.8341 | 0.7877 | 0.6721 | 0.6597 | 0.8559 | 0.6982 | 0.7008 | 0.7350 | 0.7429 |
NR-DIP | 0.8667 | 0.8236 | 0.7253 | 0.7706 | 0.9001 | 0.8308 | 0.8278 | 0.8573 | 0.8253 |
Noise level | |||||||||
NLM | 0.7802 | 0.7159 | 0.5822 | 0.6989 | 0.8151 | 0.7282 | 0.6563 | 0.7185 | 0.7119 |
CBM3D | 0.8506 | 0.8058 | 0.6400 | 0.7669 | 0.8703 | 0.8254 | 0.7663 | 0.8248 | 0.7938 |
FFDNet | 0.8870 | 0.8444 | 0.7457 | 0.8211 | 0.9205 | 0.8464 | 0.8650 | 0.8855 | 0.8519 |
IRCNN | 0.8803 | 0.8357 | 0.7475 | 0.8071 | 0.9120 | 0.8401 | 0.8612 | 0.8763 | 0.8450 |
DIP | 0.8227 | 0.7743 | 0.6445 | 0.7328 | 0.8018 | 0.6508 | 0.6107 | 0.7910 | 0.7286 |
NR-DIP | 0.8703 | 0.8182 | 0.7014 | 0.7725 | 0.8951 | 0.8196 | 0.8129 | 0.8377 | 0.8160 |
Noise level | |||||||||
NLM | 0.7550 | 0.6792 | 0.5077 | 0.6700 | 0.7725 | 0.6897 | 0.5881 | 0.6818 | 0.6680 |
CBM3D | 0.8306 | 0.7816 | 0.5711 | 0.7463 | 0.8434 | 0.8072 | 0.7222 | 0.8037 | 0.7633 |
FFDNet | 0.8735 | 0.8296 | 0.7014 | 0.8088 | 0.9062 | 0.8372 | 0.8387 | 0.8659 | 0.8327 |
IRCNN | 0.8665 | 0.8207 | 0.7025 | 0.7930 | 0.8957 | 0.8288 | 0.8360 | 0.8582 | 0.8252 |
DIP | 0.8012 | 0.7378 | 0.5748 | 0.6999 | 0.7577 | 0.6080 | 0.6990 | 0.7355 | 0.7017 |
NR-DIP | 0.8523 | 0.7944 | 0.6544 | 0.7532 | 0.8770 | 0.7917 | 0.7737 | 0.8134 | 0.7888 |
Noise level | |||||||||
NLM | 0.7298 | 0.6579 | 0.4433 | 0.6504 | 0.7242 | 0.6682 | 0.5431 | 0.6598 | 0.6346 |
CBM3D | 0.8119 | 0.7630 | 0.5080 | 0.7288 | 0.8147 | 0.7939 | 0.6855 | 0.7851 | 0.7364 |
FFDNet | - | - | - | - | - | - | - | - | - |
IRCNN | - | - | - | - | - | - | - | - | - |
DIP | 0.7686 | 0.6872 | 0.5277 | 0.6767 | 0.7853 | 0.7027 | 0.6444 | 0.7287 | 0.6902 |
NR-DIP | 0.8388 | 0.7799 | 0.5758 | 0.7361 | 0.8456 | 0.7797 | 0.7377 | 0.7938 | 0.7609 |
Noise level | |||||||||
NLM | 0.6934 | 0.6349 | 0.3687 | 0.6276 | 0.6387 | 0.6366 | 0.5032 | 0.6539 | 0.5946 |
CBM3D | 0.7860 | 0.7334 | 0.4333 | 0.7019 | 0.7718 | 0.7634 | 0.6359 | 0.7644 | 0.6988 |
FFDNet | - | - | - | - | - | - | - | - | - |
IRCNN | - | - | - | - | - | - | - | - | - |
DIP | 0.7409 | 0.6821 | 0.4634 | 0.5981 | 0.6822 | 0.6423 | 0.5431 | 0.7205 | 0.6341 |
NR-DIP | 0.8035 | 0.7489 | 0.4969 | 0.7076 | 0.7933 | 0.7474 | 0.6632 | 0.7697 | 0.7163 |
Methods | NLM | CBM3D | FFDNet | IRCNN | DIP | NR-DIP |
---|---|---|---|---|---|---|
Runtime | 2.68 | 24.80 | 1.23 | 2.26 | 148.09 | 244.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Liu, L.; Luo, Z.; Huang, J. Image Denoising Using Nonlocal Regularized Deep Image Prior. Symmetry 2021, 13, 2114. https://doi.org/10.3390/sym13112114
Xie Z, Liu L, Luo Z, Huang J. Image Denoising Using Nonlocal Regularized Deep Image Prior. Symmetry. 2021; 13(11):2114. https://doi.org/10.3390/sym13112114
Chicago/Turabian StyleXie, Zhonghua, Lingjun Liu, Zhongliang Luo, and Jianfeng Huang. 2021. "Image Denoising Using Nonlocal Regularized Deep Image Prior" Symmetry 13, no. 11: 2114. https://doi.org/10.3390/sym13112114
APA StyleXie, Z., Liu, L., Luo, Z., & Huang, J. (2021). Image Denoising Using Nonlocal Regularized Deep Image Prior. Symmetry, 13(11), 2114. https://doi.org/10.3390/sym13112114