Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Surgery
2.3. Behavioral Test
2.3.1. Measurement of the Turning Direction Bias
2.3.2. Plus-Maze Test (PMT)
2.4. Histology
2.5. Data Analysis
3. Results
3.1. Histology
3.2. Behavioral Tests
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treffert, D.A. The savant syndrome: An extraordinary condition. A synopsis: Past, present, future. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, M.; Hanazuka, Y.; Midorikawa, A. Artistic production of brain with the savant syndrome. Seitai No Kagaku 2018, 70, 531–535. [Google Scholar]
- Kawamura, M.; Midorikawa, A. Creativity, Cerebral Functional Heterogeneity, and “Oshikura maju”. Brain Nerve 2018, 70, 599–605. [Google Scholar]
- Kawamura, M.; Hanazuka, Y.; Midorikawa, A. Savant Syndrome and an “Oshikuramanju Hypothesis”. Brain Nerve 2020, 72, 193–201. [Google Scholar]
- Snyder, A. Explaining and inducing savant skills: Privileged access to lower level, less-processed information. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1399–1405. [Google Scholar] [CrossRef] [Green Version]
- Takahata, K.; Kato, M. Neural Mechanism Underlying Autistic Savant and Acquired Savant Syndrome. Brain Nerve 2008, 60, 861–869. [Google Scholar]
- Rimland, B. Savant capabilities of autistic children and their cognitive implications. In Cognitive Defects in the Development of Mental Illness; Serban, G., Ed.; Brunner/Mazel: New York, NY, USA, 1978; pp. 43–65. [Google Scholar]
- Treffert, D. Extraordinary People: Understanding Savant Syndrome; iUniverse: Bloomington, IN, USA, 2006; ISBN 9780595092390. [Google Scholar]
- Hermelin, B. Bright Splinters of the Mind: A Personal Story of Research with Autistic Savants; Jessica Kingsley: London, UK, 2001; ISBN 1853029327. [Google Scholar]
- Miller, B.L.; Cummings, J.; Mishkin, F.; Boone, K.; Prince, F.; Ponton, M.; Cotman, C. Emergence of artistic talent in frontotemporal dementia. Neurology 1998, 51, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Midorikawa, A.; Fukutake, T.; Kawamura, M. Dementia and Painting in Patients from Different Cultural Backgrounds. Eur. Neurol. 2008, 60, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.L.; Ponton, M.; Benson, D.F.; Cummings, J.L.; Mena, I. Enhanced artistic creativity with temporal lobe degeneration. Lancet 1996, 348, 1744–1745. [Google Scholar] [CrossRef]
- Kumar Grover, V. Autistic Savants: Making Child Really Special. Int. J. Sci. Res. 2013, 4, 1824–1827. [Google Scholar] [CrossRef]
- Snyder, A.; Bahramali, H.; Hawker, T.; Mitchell, D.J. Savant-like Numerosity Skills Revealed in Normal People by Magnetic Pulses. Perception 2006, 35, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.P.; Fregni, F.; Snyder, A.W. Visual memory improved by non-invasive brain stimulation. Brain Res. 2010, 1353, 168–175. [Google Scholar] [CrossRef]
- Snyder, A.W.; Mulcahy, E.; Taylor, J.L.; Mitchell, D.J.; Sachdev, P.; Gandevia, S.C. Savant-Like Skills Exposed in Normal People by Suppressing the Left Fronto-Temporal Lobe. J. Integr. Neurosci. 2003, 2, 149–158. [Google Scholar] [CrossRef]
- Mottron, L.; Dawson, M.; Soulières, I. Enhanced perception in savant syndrome: Patterns, structure and creativity. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapur, N. Paradoxical functional facilitation in brain-behaviour research—A critical review. Brain 1996, 119, 1775–1790. [Google Scholar] [CrossRef] [Green Version]
- Perkins, T.J.; Stokes, M.A.; McGillivray, J.A.; Mussap, A.J.; Cox, I.A.; Maller, J.J.; Bittar, R.G. Increased left hemisphere impairment in high-functioning autism: A tract based spatial statistics study. Psychiatry Res. Neuroimag. 2014, 224, 119–123. [Google Scholar] [CrossRef]
- Peterson, D.; Mahajan, R.; Crocetti, D.; Mejia, A.; Mostofsky, S. Left-Hemispheric Microstructural Abnormalities in Children with High Functioning Autism Spectrum Disorder. Autism Res. 2015, 8, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postema, M.C.; van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Filho, G.B.; Calderoni, S.; Calvo, R.; Daly, E.; et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, M.R.; Ziegler, D.A.; Deutsch, C.K.; O’Brien, L.M.; Kennedy, D.N.; Filipek, P.A.; Bakardjiev, A.I.; Hodgson, J.; Takeoka, M.; Makris, N.; et al. Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain 2005, 128, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Herbert, M.R.; Harris, G.J.; Adrien, K.T.; Ziegler, D.A.; Makris, N.; Kennedy, D.N.; Lange, N.T.; Chabris, C.F.; Bakardjiev, A.; Hodgson, J.; et al. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 2002, 52, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, R.C.; Shih, P.; Fishman, I.; Ford, L.M.; Müller, R.-A. Pervasive Rightward Asymmetry Shifts of Functional Networks in Autism SpectrumDisorder. JAMA Psychiatry 2013, 70, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyler, L.T.; Pierce, K.; Courchesne, E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain 2012, 135, 949–960. [Google Scholar] [CrossRef] [Green Version]
- Just, M.A.; Cherkassky, V.L.; Keller, T.A.; Minshew, N.J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 2004, 127, 1811–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindell, A.K.; Hudry, K. Atypicalities in Cortical Structure, Handedness, and Functional Lateralization for Language in Autism Spectrum Disorders. Neuropsychol. Rev. 2013, 23, 257–270. [Google Scholar] [CrossRef]
- Kleinhans, N.M.; Müller, R.A.; Cohen, D.N.; Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008, 1221, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.L.; Boone, K.; Cummings, J.L.; Read, S.L.; Mishkin, F. Functional correlates of musical and visual ability in frontotemporal dementia. Br. J. Psychiatry 2000, 176, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Daskalakis, Z.J.; Christensen, B.K.; Fitzgerald, P.B.; Roshan, L.; Chen, R. The mechanisms of interhemispheric inhibition in the human motor cortex. J. Physiol. 2002, 543, 317. [Google Scholar] [CrossRef]
- Perez, M.A.; Cohen, L.G. Interhemispheric inhibition between primary motor cortices: What have we learned? J. Physiol. 2009, 587, 725. [Google Scholar] [CrossRef]
- Iwata, Y.; Jono, Y.; Mizusawa, H.; Kinoshita, A.; Hiraoka, K. Interhemispheric Inhibition Induced by Transcranial Magnetic Stimulation Over Primary Sensory Cortex. Front. Hum. Neurosci. 2016, 10, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain lateralization: A comparative perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of Lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, M. Hemispheric Specialization. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G. Brain and behavioural asymmetries in non-human species. Laterality 2021, 26, v–vii. [Google Scholar] [CrossRef]
- Lesley, J.R.; Vallortigara, G.; Richard, J.A. Divided Brains Biology and Behaviour Brain Asymmetries; Cambridge University Press: New York, NY, USA, 2013; ISBN 9781107005358. [Google Scholar]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef]
- Pascual, A.; Huang, K.-L.; Neveu, J.; Préat, T. Brain asymmetry and long-term memory. Nature 2004, 427, 605–606. [Google Scholar] [CrossRef]
- Moorman, S.; Nicol, A.U. Memory-related brain lateralisation in birds and humans. Neurosci. Biobehav. Rev. 2015, 50, 86–102. [Google Scholar] [CrossRef]
- Andersen, P. The Hippocampus Book; Oxford University Press: Oxford, UK, 2007; ISBN 9780195100273. [Google Scholar]
- Klur, S.; Muller, C.; Pereira de Vasconcelos, A.; Ballard, T.; Lopez, J.; Galani, R.; Certa, U.; Cassel, J.-C. Hippocampal-dependent spatial memory functions might be lateralized in rats: An approach combining gene expression profiling and reversible inactivation. Hippocampus 2009, 19, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Moskal, J.R.; Kroes, R.A.; Otto, N.J.; Rahimi, O.; Claiborne, B.J. Distinct patterns of gene expression in the left and right hippocampal formation of developing rats. Hippocampus 2006, 16, 629–634. [Google Scholar] [CrossRef]
- Samara, A.; Vougas, K.; Papadopoulou, A.; Anastasiadou, E.; Baloyanni, N.; Paronis, E.; Chrousos, G.P.; Tsangaris, G.T. Proteomics reveal rat hippocampal lateral asymmetry. Hippocampus 2011, 21, 108–119. [Google Scholar] [CrossRef]
- Kawahara, A.; Kurauchi, S.; Fukata, Y.; Martínez-Hernández, J.; Yagihashi, T.; Itadani, Y.; Sho, R.; Kajiyama, T.; Shinzato, N.; Narusuye, K.; et al. Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry. J. Physiol. 2013, 591, 4777–4791. [Google Scholar] [CrossRef]
- Shinohara, Y. Size and receptor density of glutamatergic synapses: A viewpoint from left-right asymmetry of CA3-CA1 connections. Front. Neuroanat. 2009, 3, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakami, R.; Shinohara, Y.; Kato, Y.; Sugiyama, H.; Shigemoto, R.; Ito, I. Asymmetrical allocation of NMDA receptor ε2 subunits in hippocampal circuitry. Science 2003, 300, 990–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Kawakami, R.; Shinohara, Y.; Fukaya, M.; Sakimura, K.; Mishina, M.; Watanabe, M.; Ito, I.; Shigemoto, R. Target-Cell-Specific Left-Right Asymmetry of NMDA Receptor Content in Schaffer Collateral Synapses in ϵ1/NR2A Knock-Out Mice. J. Neurosci. 2005, 25, 9213–9226. [Google Scholar] [CrossRef]
- Kohl, M.M.; Shipton, O.A.; Deacon, R.M.; Rawlins, J.N.P.; Deisseroth, K.; Paulsen, O. Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nat. Neurosci. 2011, 14, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, Y.; Hirase, H.; Watanabe, M.; Itakura, M.; Takahashi, M.; Shigemoto, R. Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc. Natl. Acad. Sci. USA 2008, 105, 19498–19503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshdel-Sarkarizi, H.; Hami, J.; Mohammadipour, A.; Sadr-Nabavi, A.; Mahmoudi, M.; Kheradmand, H.; Peyvandi, M.; Nourmohammadi, E.; Haghir, H. Developmental regulation and lateralization of GABA receptors in the rat hippocampus. Int. J. Dev. Neurosci. 2019, 76, 86–94. [Google Scholar] [CrossRef]
- Lister, J.P.; Tonkiss, J.; Blatt, G.J.; Kemper, T.L.; DeBassio, W.A.; Galler, J.R.; Rosene, D.L. Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: A stereological investigation. Hippocampus 2006, 16, 946–958. [Google Scholar] [CrossRef]
- Katahira, T.; Miyazaki, N.; Motoyama, J. Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Dev. Growth Differ. 2018, 60, 278–290. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Sakurai, Y. Left–right functional asymmetry of ventral hippocampus depends on aversiveness of situations. Behav. Brain Res. 2017, 325, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Sakurai, Y. Left-right functional difference of the rat dorsal hippocampus for short-term memory and long-term memory. Behav. Brain Res. 2020, 382, 112478. [Google Scholar] [CrossRef]
- Goto, K.; Ito, I. The asymmetry defect of hippocampal circuitry impairs working memory in β2-microglobulin deficient mice. Neurobiol. Learn. Mem. 2017, 139, 50–55. [Google Scholar] [CrossRef]
- Jordan, J.T.; Shanley, M.R.; Pytte, C.L. Behavioral state-dependent lateralization of dorsal dentate gyrus c-Fos expression in mice. Neuronal Signal. 2019, 3, NS20180206. [Google Scholar] [CrossRef] [Green Version]
- Shipton, O.A.; El-Gaby, M.; Apergis-Schoute, J.; Deisseroth, K.; Bannerman, D.M.; Paulsen, O.; Kohl, M.M. Left–right dissociation of hippocampal memory processes in mice. Proc. Natl. Acad. Sci. USA 2014, 111, 15238–15243. [Google Scholar] [CrossRef] [Green Version]
- El-Gaby, M.; Zhang, Y.; Wolf, K.; Schwiening, C.J.; Paulsen, O.; Shipton, O.A. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH. Cell Rep. 2016, 16, 2259–2268. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Wang, D.; Yang, Q.; Yan, T.; Wang, Z.; Yan, Y.; Zhao, J.; Xie, Z.; Liu, Y.; Ke, Z.; et al. The lateralization of left hippocampal CA3 during the retrieval of spatial working memory. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Shinohara, Y.; Hosoya, A.; Hirase, H. Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus. Nat. Commun. 2013, 4, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, Y.; Hosoya, A.; Yamasaki, N.; Ahmed, H.; Hattori, S.; Eguchi, M.; Yamaguchi, S.; Miyakawa, T.; Hirase, H.; Shigemoto, R. Right-hemispheric dominance of spatial memory in split-brain mice. Hippocampus 2012, 22, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Sakurai, Y. Disconnection between Rat’s Left and Right Hemisphere Impairs Short-Term Memory but Not Long-Term Memory. Symmetry 2021, 13, 1872. [Google Scholar] [CrossRef]
- El-Gaby, M.; Kohl, M.M.; Paulsen, O. Optogenetic Methods to Study Lateralized Synaptic Function. In Lateralized Brain Functions; Rogers, L.J., Vallortigara, G., Eds.; Humana Press: New York, NY, USA, 2017; Volume 122, pp. 331–365. ISBN 9781493967254. [Google Scholar]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080475134. [Google Scholar]
- Glick, S.D.; Zimmerberg, B.; Jerussi, T.P. Adaptive significance of laterality in the rodent. Ann. N. Y. Acad. Sci. 1977, 299, 180–185. [Google Scholar] [CrossRef]
- Fedrowitz, M.; Potschka, H.; Richter, A.; Löscher, W. A microdialysis study of striatal dopamine release in the circling rat, a genetic animal model with spontaneous lateralized rotational behavior. Neuroscience 2000, 97, 69–77. [Google Scholar] [CrossRef]
- Mundorf, A.; Matsui, H.; Ocklenburg, S.; Freund, N. Asymmetry of turning behavior in rats is modulated by early life stress. Behav. Brain Res. 2020, 393, 112807. [Google Scholar] [CrossRef]
- Barker, G.R.I.; Bird, F.; Alexander, V.; Warburton, E.C. Recognition Memory for Objects, Place, and Temporal Order: A Disconnection Analysis of the Role of the Medial Prefrontal Cortex and Perirhinal Cortex. J. Neurosci. 2007, 27, 2948–2957. [Google Scholar] [CrossRef] [Green Version]
- Eichenbaum, H. Prefrontal–hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 2017, 18, 547–558. [Google Scholar] [CrossRef]
- Papp, M.; Gruca, P.; Lason, M.; Niemczyk, M.; Willner, P. Functional lateralization in the prefrontal cortex of dopaminergic modulation of memory consolidation. Behav. Pharmacol. 2019, 30, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Costa, N.S.; Vicente, M.A.; Cipriano, A.C.; Miguel, T.T.; Nunes-de-Souza, R.L. Functional lateralization of the medial prefrontal cortex in the modulation of anxiety in mice: Left or right? Neuropharmacology 2016, 108, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.L.; Teicher, M.H. Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport 1999, 10, 3497–3500. [Google Scholar] [CrossRef]
- Kiyokawa, Y.; Takahashi, D.; Takeuchi, Y.; Mori, Y. The right central amygdala shows greater activation in response to an auditory conditioned stimulus in male rats. J. Vet. Med. Sci. 2016, 78, 1563–1568. [Google Scholar] [CrossRef] [Green Version]
- Coleman-Mesches, K.; McGaugh, J.L. Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res. 1995, 676, 183–188. [Google Scholar] [CrossRef]
- Coleman-Mesches, K.; McGaugh, J.L. Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res. 1995, 670, 75–81. [Google Scholar] [CrossRef]
Statistics | p-Value | p < 0.05 | ||
---|---|---|---|---|
Day 1 | Sham–Right | 1.40 | 0.51 | |
Sham–Left | 0.60 | 0.93 | ||
Sham–Bilateral | 0.20 | 0.99 | ||
Day 2 | Sham–Right | 3.41 | 0.0042 | * |
Sham–Left | 1.20 | 0.63 | ||
Sham–Bilateral | 1.20 | 0.63 | ||
Day 3 | Sham–Right | 4.01 | <0.001 | * |
Sham–Left | 0.40 | 0.98 | ||
Sham–Bilateral | 3.01 | 0.015 | * | |
Day 4 | Sham–Right | 0.60 | 0.93 | |
Sham–Left | 0.80 | 0.85 | ||
Sham–Bilateral | 5.41 | <0.001 | * | |
Day 5 | Sham–Right | 1.40 | 0.51 | |
Sham–Left | 0.20 | 0.99 | ||
Sham–Bilateral | 5.41 | <0.001 | * | |
Day 6 | Sham–Right | 0.60 | 0.93 | |
Sham–Left | 0.40 | 0.98 | ||
Sham–Bilateral | 6.61 | <0.001 | * | |
Day 7 | Sham–Right | 0.20 | 0.99 | |
Sham–Left | 0.20 | 0.99 | ||
Sham–Bilateral | 6.61 | <0.001 | * |
Statistics | p-Value | p < 0.05 | ||
---|---|---|---|---|
Day 1 | Sham–Right | 0.23 | 0.99 | |
Sham–Left | 0.45 | 0.97 | ||
Sham–Bilateral | 0.90 | 0.81 | ||
Day 2 | Sham–Right | 1.35 | 0.53 | |
Sham–Left | 0.68 | 0.91 | ||
Sham–Bilateral | 1.13 | 0.67 | ||
Day 3 | Sham–Right | 1.58 | 0.39 | |
Sham–Left | 0.90 | 0.81 | ||
Sham–Bilateral | 1.80 | 0.28 | ||
Day 4 | Sham–Right | 0.68 | 0.91 | |
Sham–Left | 0.23 | 0.99 | ||
Sham–Bilateral | 1.80 | 0.28 | ||
Day 5 | Sham–Right | 1.80 | 0.28 | |
Sham–Left | 0.68 | 0.91 | ||
Sham–Bilateral | 3.38 | 0.0047 | * | |
Day 6 | Sham–Right | 0.90 | 0.81 | |
Sham–Left | 1.58 | 0.39 | ||
Sham–Bilateral | 3.38 | 0.0046 | * | |
Day 7 | Sham–Right | 0.45 | 0.97 | |
Sham–Left | 0.23 | 0.99 | ||
Sham–Bilateral | 3.60 | 0.0021 | * |
Statistics | p-Value | p < 0.05 | ||
---|---|---|---|---|
Day 1 | Sham–Right | 2.27 | 0.11 | |
Sham–Left | 0.28 | 0.99 | ||
Sham–Bilateral | 1.42 | 0.49 | ||
Day 2 | Sham–Right | 3.12 | 0.011 | * |
Sham–Left | 0.85 | 0.83 | ||
Sham–Bilateral | 0.28 | 0.99 | ||
Day 3 | Sham–Right | 3.69 | 0.0015 | * |
Sham–Left | 1.70 | 0.32 | ||
Sham–Bilateral | 1.99 | 0.19 | ||
Day 4 | Sham–Right | 0.00 | 1.00 | |
Sham–Left | 1.42 | 0.49 | ||
Sham–Bilateral | 5.40 | <0.001 | * | |
Day 5 | Sham–Right | 0.28 | 0.99 | |
Sham–Left | 0.57 | 0.94 | ||
Sham–Bilateral | 3.41 | 0.0042 | * | |
Day 6 | Sham–Right | 0.28 | 0.99 | |
Sham–Left | 1.42 | 0.49 | ||
Sham–Bilateral | 5.11 | <0.001 | * | |
Day 7 | Sham–Right | 0.85 | 0.83 | |
Sham–Left | 0.00 | 1.00 | ||
Sham–Bilateral | 4.83 | <0.001 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakaguchi, Y.; Sakurai, Y. Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats. Symmetry 2021, 13, 2138. https://doi.org/10.3390/sym13112138
Sakaguchi Y, Sakurai Y. Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats. Symmetry. 2021; 13(11):2138. https://doi.org/10.3390/sym13112138
Chicago/Turabian StyleSakaguchi, Yukitoshi, and Yoshio Sakurai. 2021. "Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats" Symmetry 13, no. 11: 2138. https://doi.org/10.3390/sym13112138
APA StyleSakaguchi, Y., & Sakurai, Y. (2021). Paradoxical Enhancement of Spatial Learning Induced by Right Hippocampal Lesion in Rats. Symmetry, 13(11), 2138. https://doi.org/10.3390/sym13112138