On a Generalized Convolution Operator
Abstract
:1. Introduction, Motivation and Preliminaries
2. Key Lemmas
- (i)
- (ii)
- .
3. Main Results
Author Contributions
Funding
Conflicts of Interest
References
- Raina, R.K.; Sharma, P. Subordination properties of univalent functions involving a new class of operators. Electron. J. Math. Anal. Appl. 2014, 2, 37–52. [Google Scholar]
- Prajapat, J.K. Subordination and superordination preserving properties for generalized multiplier transformation operator. Math. Comput. Model. 2012, 55, 1456–1465. [Google Scholar] [CrossRef]
- Sharma, P.; Prajapat, J.K.; Raina, R.K. Certain subordination results involving a generalized multiplier transformation operator. J. Class. Anal. 2013, 2, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Raina, R.K.; Sokół, J. The convolution of finite number of analytic functions. Publ. Inst. Math. 2019, 105, 49–63. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Carlson, B.C.; Shaffer, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Séminaire de Mathématiques Supérieures, 83; Presses de l’Université de Montréal: Montreal, QC, Canada, 1982. [Google Scholar]
- Owa, S.; Srivastava, S.H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Raina, R.K.; Sharma, P. Subordination preserving properties associated with a class of operators. Matematiche 2013, 68, 217–228. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 2004. [Google Scholar] [CrossRef] [Green Version]
- Sălxaxgean, G.S. Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Mathematics 1013; Springer: Berlin, Germany; New York, NY, USA, 1983. [Google Scholar]
- Cǎtaş, A. Class of analytic functions associated with new multiplier transformations and hypergeometric function. Taiwan. J. Math. 2010, 14, 403–412. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Raina, R.K.; Sălxaxgean, G.S. Some geometric properties of analytic functions involving a new fractional operator. Mediterr. J. Math. 2016, 13, 4591–4605. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sharma, P.; Raina, R.K. Inclusion results for certain classes of analytic functions associated with a new fractional differintegral operator. Rev. Real Acad. Cienc. Exactas, FíSicas Nat. Ser. Matemáticas 2018, 112, 271–292. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations; Monographs and Textbooks in Pure and Applied Mathematics, 225; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Abramowitz, M.; Stegun, I.A.; Björk, H. Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Nat. Bur. Standards, Washington, D.C., 1964). Math. Comp. 1969, 23, 691. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1985. [Google Scholar]
- Ruscheweyh, S.; Stankiewicz, J. Subordination under convex univalent functions. Bull. Polish Acad. Sci. Math. 1985, 33, 499–502. [Google Scholar]
- Stankiewicz, J.; Stankiewicz, Ż. Some applications of the Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie-Sklodowska 1986, 40, 251–265. [Google Scholar]
- Srivastava, H.M.; Owa, S. (Eds.) Current Topics in Analytic Function Theory; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1992. [Google Scholar]
- Appell, P. Mémoire sur les équations différentielles linéaires. Ann. Sci. École Norm. Sup. 1881, 10, 391–424. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1984. [Google Scholar]
- Prajapat, J.K.; Raina, R.K.; Sokol, J. On a Hurwitz-Lerch zeta type function and its applications. Bull. Belg. Math. Soc. Simon Stevin 2013, 20, 803–820. [Google Scholar] [CrossRef]
- Sharma, P.; Raina, R.K.; Sokół, J. On the convolution of a finite number of analytic functions involving a generalized Srivastava-Attiya operator. Mediterr. J. Math. 2016, 13, 1535–1553. [Google Scholar] [CrossRef]
- Sharma, P.; Maurya, R.K. Certain subordination results on the convolution of analytic functions. J. Math. Appl. 2014, 37, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. The convexity of Hadamard product of three functions. J. Math. Appl. 2007, 29, 121–125. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Raina, R.K.; Sokół, J. On a Generalized Convolution Operator. Symmetry 2021, 13, 2141. https://doi.org/10.3390/sym13112141
Sharma P, Raina RK, Sokół J. On a Generalized Convolution Operator. Symmetry. 2021; 13(11):2141. https://doi.org/10.3390/sym13112141
Chicago/Turabian StyleSharma, Poonam, Ravinder Krishna Raina, and Janusz Sokół. 2021. "On a Generalized Convolution Operator" Symmetry 13, no. 11: 2141. https://doi.org/10.3390/sym13112141
APA StyleSharma, P., Raina, R. K., & Sokół, J. (2021). On a Generalized Convolution Operator. Symmetry, 13(11), 2141. https://doi.org/10.3390/sym13112141