Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
Abstract
:1. Background and Motivations
The question is that if there are almost contact metric manifolds, that metrics are ∗-conformal η-Ricci–Yamabe soliton?
2. Background Materials and Preliminaries
3. On an n-Dimensional -Cosymplectic Manifold in Terms of Quarter-Symmetric Metric Connection
4. Main Results
5. Some Applications
6. Harmonic Aspect of ∗-Conformal -Ricci–Yamabe Soliton on -Dimensional -Cosymplectic Manifold Admitting Quarter-Symmetric Metric Connection
- 1.
- ,
- 2.
- and
- 3.
- , respectively.
- 1.
- ,
- 2.
- and
- 3.
- , respectively.
7. Example of a 5-Dimensional -Cosymplectic Metric as a ∗-Conformal -Ricci–Yamabe Soliton in Regard to Quarter-Symmetric Metric Connection
8. Conclusions and Remarks
- (i)
- Is Theorem 2 true if we do not assume a quarter-symmetric connection on a -cosymplectic manifold?
- (ii)
- Is Theorem 3 true without considering the potential vector field of the soliton is of gradient type?
- (iii)
- If the conformal vector field is not killing, then is Theorem 8 true?
- (iv)
- What are the results of our paper in true Trans-Sasakian manifolds, Co-Kähler manifold, or para-contact geometry?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. Three Manifold with positive Ricci curvature. J. Differ. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Topping, P. Lecture on the Ricci Flow; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Hamilton, R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. [Google Scholar]
- Barbosa, E.; Ribeiro, E. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79–89. [Google Scholar] [CrossRef]
- Bejancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kähler manifolds. Int. J. Math. Sci. 1993, 16, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.; Ribeiro, J.E. Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc. 2012, 140, 1033–1040. [Google Scholar] [CrossRef]
- Barros, A.; Batista, R.; Ribeiro, J.E. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh Math. 2014, 174, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.M. Almost η-Ricci solitons in (LCS)n-manifolds. Bull. Belgian Math. Soc.-Simon Stevin. 2018, 25, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.M. η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, 20, 1–13. [Google Scholar]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture notes in Math 509; Springer: Berlin, Germany, 1976. [Google Scholar]
- Catino, G.; Mazzieri, L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. [Google Scholar] [CrossRef] [Green Version]
- Calin, C.; Crasmareanu, M. η-Ricci solitons on hopf hypersurfaces in complex space forms. Rev. Roumaine Math. Pures Appl. 2012, 57, 55–63. [Google Scholar]
- Calvaruso, G.; Perrone, A. Ricci solitons in three-dimensional paracontact geometry. J. Geom. Phys. 2015, 98, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.T.; Sharma, R. Contact geometry and Ricci solitons. Int. J. Geom. Methods Math. Phys. 2010, 7, 951–960. [Google Scholar] [CrossRef]
- Dey, S.; Roy, S. ∗-η-Ricci Soliton within the framework of Sasakian manifold. J. Dyn. Syst. Geom. Theor. 2020, 18, 163–181. [Google Scholar] [CrossRef]
- De, U.C.; Sengupta, J. Quater-symmetric metric connection on a sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 2000, 49, 7–13. [Google Scholar]
- Ganguly, D.; Dey, S.; Ali, A.; Bhattacharyya, A. Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form. J. Geom. Phys. 2021, 169, 104339. [Google Scholar] [CrossRef]
- Ghosh, A. Yamabe soliton and Quasi Yamabe soliton on Kenmotsu manifold. Math. Slovaca 2020, 70, 151–160. [Google Scholar] [CrossRef]
- Golab, S. On Semi-symmetric and quarter-symmetric connections. Tensor 1975, 29, 249–254. [Google Scholar]
- Goldberg, S.I.; Yano, K. Integrability of almost cosymplectic structure. Pac. J. Math. 1969, 31, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Güler, S.; Crasmareanu, M. Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turk. J. Math. 2019, 43, 2361–2641. [Google Scholar] [CrossRef]
- Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor. Tokyo J. Math. 2002, 25, 473–483. [Google Scholar] [CrossRef]
- Haseeb, A.; Prakasha, D.G.; Harish, H. ∗-Conformal η-Ricci Soliton on α-Cosymplectic manifolds. Int. J. Analy. Appli. 2021, 19, 165–179. [Google Scholar]
- Kim, T.W.; Pak, H.K. Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. 2005, 21, 841–846. [Google Scholar] [CrossRef]
- Kenna, R. Homotopy in statistical physics. Condens. Matter Phys. 2006, 9, 283–304. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R. Almost Ricci solitons and K-contact geometry. Monatsh Math. 2014, 175, 621–628. [Google Scholar] [CrossRef]
- Sharma, R. A 3-dimensional Sasakian metric as a Yamabe Soliton. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1220003. [Google Scholar] [CrossRef]
- Siddiqi, M.D. Conformal η-Ricci solitons in δ-Lorentzian Trans Sasakian manifolds. Int. J. Maps Math. 2018, 1, 15–34. [Google Scholar]
- Siddiqi, M.D.; Akyol, M.A. η-Ricci–Yamabe Soliton on Riemannian Submersions from Riemannian manifolds. arXiv 2020, arXiv:2004.14124. [Google Scholar]
- Siddiqi, M.D.; Siddqui, S.A. Conformal Ricci soliton and Geometrical structure in a perfect fluid spacetime. Int. J. Geom. Methods Mod. Phys. 2020, 2050083. [Google Scholar] [CrossRef]
- Singh, A.; Kishor, S. Some types of η-Ricci Solitons on Lorentzian para-Sasakian manifolds. Facta Univ. (NIŠ) 2018, 33, 217–230. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, S.; Chen, X. Certain results of conformal and ∗-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds. Filomat 2021. to appear. [Google Scholar]
- Tachibana, S. On almost-analytic vectors in almost Ka¨hlerian manifolds. Tohoku Math. J. 1959, 11, 247–265. [Google Scholar]
- Yano, K. On semi-symmetric connection. Rev. Roum. Math. Pures Appl. 1970, 15, 1570–1586. [Google Scholar]
- Özturk, H.; Murathan, C.; Aktan, N.; Vanli, A.T. Almost α-cosymplectic f-manifolds. Ann. Alexandru Ioan Cuza Univ.-Math. 2014, 60, 211–226. [Google Scholar] [CrossRef]
- Yau, S.T. Harmonic functions on complete Riemannian manifolds. Commu. Pure Appl. Math. 1975, 28, 201–228. [Google Scholar] [CrossRef]
- Vlachos, T. Homology vanishing theorems for submanifolds. Proc. Am. Math. Soc. 2007, 135, 2607–2617. [Google Scholar] [CrossRef]
- Vlachos, T. The Ricci curvature of submanifolds and its applications. Quart. J. Math. 2003, 55, 225–230. [Google Scholar] [CrossRef]
- Lawson, H.B.; Simons, J. On stable currents and their application to global problems in real and complex geometry. Ann. Math. 1973, 98, 427–450. [Google Scholar] [CrossRef]
- Li, Y.L.; Lone, M.A.; Wani, U.A. Biharmonic submanifolds of Kähler product manifolds. AIMS Math. 2021, 6, 9309–9321. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Ali, R. A general inequality for CR-warped products in generalized Sasakian space form and its applications. Adv. Math. Phys. 2021, 2021, 5777554. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A. Geometric Mechanics on Warped Product Semi-slant Submanifold of Generalized Complex Space forms. Adv. Math. Phys. 2021, 2021, 5900801. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Space 2021, 2021, 6195939. [Google Scholar] [CrossRef]
- Li, Y.L.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [Google Scholar] [CrossRef]
- Li, Y.L.; Pişcoran, L.I.; Ali, A.; Alkhaldi, A.H. Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces. Symmetry 2021, 13, 1587. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, S.Y.; Wang, Z.G. Tangent developables and Darboux developables of framed curves. Topol. Appl. 2021, 301, 107526. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G. Lightlike tangent developables in de Sitter 3-space. J. Geom. Phys. 2021, 164, 1–11. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G.; Zhao, T.H. Geometric Algebra of Singular Ruled Surfaces. Adv. Appl. Clifford Algebras. 2021, 31, 1–19. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, Y.S.; Sun, Q.Y. Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space. Int. J. Geom. Methods Mod. Phys. 2021, 18, 1–31. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G.; Zhao, T.H. Slant helix of order n and sequence of darboux developables of principal-directional curves. Math. Methods Appl. Sci. 2020, 43, 9888–9903. [Google Scholar] [CrossRef]
- Mofarreh, F.; Ali, A.; Alluhaibi, N.; Belova, O. Ricci curvature for warped product submanifolds of Sasakian space forms and its applications to differential equations. J. Math. 2021, 2021, 1207646. [Google Scholar] [CrossRef]
- Perrone, A. Some results on almost paracontact metric manifolds. Mediterr. J. Math. 2016, 13, 3311–3326. [Google Scholar] [CrossRef]
- Rauch, H.E. A contribution to differential geometry in the large. Ann. Math. 1951, 54, 38–55. [Google Scholar] [CrossRef]
- Smale, S. Generalized Poincare’s conjecture in dimensions greater than four. Ann. Math. 1961, 74, 391–406. [Google Scholar] [CrossRef]
- Sjerve, D. Homology spheres which are covered by spheres. J. Lond. Math. Soc. 1973, 6, 333–336. [Google Scholar] [CrossRef]
- Sahin, F. On the topology of CR-warped product submanifolds. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850032. [Google Scholar] [CrossRef]
- Surya, S. Causal set topology. Theor. Comput. Sci. 2008, 405, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Shiohama, K.; Xu, H. The topological sphere theorem for complete submanifolds. Comp. Maths. 1997, 107, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R. Certain results on K-contact and (κ,μ)-contact manifolds. J. Geom. 2008, 89, 138–147. [Google Scholar] [CrossRef]
- Wallah, N.R. Minimal immersion of symmetric spaces into spheres. In Symmetric Spaces; Dekker: New York, NY, USA, 1972; pp. 1–40. [Google Scholar]
- Xin, Y.L. An application of integral currents to the vanishing theorems. Sci. China Ser. A 1984, 27, 233–241. [Google Scholar]
- Xu, H.W.; Zhao, E.T. Topological and differentiable sphere theorems for complete submanifolds. Comm. Anal. Geom. 2009, 17, 565–585. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.W.; Ye, F. Differentiable sphere theorems for submanifolds of positive k-th ricci curvature. Manu. Math. 2012, 138, 529–543. [Google Scholar] [CrossRef]
- Xu, H.W.; Gu, J.R. Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom. Funct. Anal. 2013, 23, 1684–1703. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Li, Y.; Roy, S.; Dey, S. Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection. Symmetry 2021, 13, 2189. https://doi.org/10.3390/sym13112189
Zhang P, Li Y, Roy S, Dey S. Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection. Symmetry. 2021; 13(11):2189. https://doi.org/10.3390/sym13112189
Chicago/Turabian StyleZhang, Pengfei, Yanlin Li, Soumendu Roy, and Santu Dey. 2021. "Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection" Symmetry 13, no. 11: 2189. https://doi.org/10.3390/sym13112189
APA StyleZhang, P., Li, Y., Roy, S., & Dey, S. (2021). Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection. Symmetry, 13(11), 2189. https://doi.org/10.3390/sym13112189