On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey
Abstract
:1. Introduction
2. Auxiliary Information on n-Normed Spaces
- (N1)
- if and only if vectors are linearly dependent;
- (N2)
- is invariant under permutation of ;
- (N3)
- ;
- (N4)
- ,
- if is a convergent sequence of elements of , then
- if and , then
- if andthen
3. Preliminary Stability Results
4. Ulam Stability in 2-Normed Spaces
- (i)
- If and
- (ii)
- (iii)
- If and
5. Some Other Results
Author Contributions
Funding
Conflicts of Interest
References
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzdęk, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 9, 278–326. [Google Scholar] [CrossRef]
- Pólya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis I; Springer: Berlin, Germany, 1925. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J. Banach limit in the stability problem of a linear functional equation. Results Math. 2021, 76, 51. [Google Scholar] [CrossRef]
- Rassias, J.M. On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 1982, 46, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Rassias, J.M. On a new approximation of approximately linear mappings by linear mappings. Discuss. Math. 1985, 7, 193–196. [Google Scholar]
- Brzdęk, J. A hyperstability result for the Cauchy equation. Bull. Australian Math. Soc. 2014, 89, 33–40. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators, Mathematical Analysis and its Applications v. 1; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Brzdęk, J.; Ciepliński, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
- Kaiser, Z.; Páles, Z. An example of a stable functional equation when the Hyers method does not work. J. Inequal. Pure Appl. Math. 2005, 6, 11. [Google Scholar]
- Brzdęk, J.; Cadariu, L.; Ciepliński, K. Fixed point theory and the Ulam stability. J. Funct. Spaces 2014, 2014, 829419. [Google Scholar] [CrossRef] [Green Version]
- Ciepliński, K. Applications of fixed point theorems to the Hyers-Ulam stability of functional equations—A survey. Ann. Funct. Anal. 2012, 3, 151–164. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on Functional Equations and Their Applications; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables. Volume 31 of Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Castillo, E.; Ruiz-Cobo, M.R. Functional Equations and Modelling in Science and Engineering; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, 2nd ed.; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Kuczma, M.; Choczewski, B.; Ger, R. Iterative Functional Equations; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Misiak, A. n-inner product spaces. Math. Nachr. 1989, 140, 299–319. [Google Scholar] [CrossRef]
- Gähler, S. 2-metrisch Räume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gähler, S. Lineare 2-normierte Räumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n-Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Gunawan, H.; Mashadi, M. On n-normed spaces. Int. J. Math. Math. Sci. 2001, 27, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.Z. Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces. Abstr. Appl. Anal. 2013, 2013, 648709. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.Z.; Rassias, J.M. On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces. Abstr. Appl. Anal. 2012, 2012, 926390. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; El-hady, E.-s. On hyperstability of the Cauchy functional equation in n-Banach spaces. Mathematics 2020, 8, 1886. [Google Scholar] [CrossRef]
- Chen, X.Y.; Song, M.M. Characterizations on isometries in linear n-normed spaces. Nonlinear Anal. 2010, 72, 1895–1901. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Lee, K.; Park, C.-G. On the Aleksandrov problem in linear n-normed spaces. Nonlinear Anal. 2004, 59, 1001–1011. [Google Scholar]
- Dutta, H. On some n-normed linear space valued difference sequences. J. Franklin Inst. 2011, 348, 2876–2883. [Google Scholar] [CrossRef]
- Eghbali, N.; Rassias, J.M.; Taheri, M. On the stability of a k-cubic functional equation in intuitionistic fuzzy n-normed spaces. Res. Math. 2016, 70, 233–248. [Google Scholar] [CrossRef]
- Gunawan, H.; Neswan, O.; Sukaesih, E. Fixed point theorems in bounded sets in an n-normed space. J. Math. Anal. 2015, 6, 51–58. [Google Scholar]
- Bahyrycz, A.; Olko, J. On stability of the general linear equation. Aequ. Math. 2015, 89, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aequ. Math. 2016, 90, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Phochai, T.; Saejung, S. Hyperstability of generalised linear functional equations in several variables. Bull. Australian Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On hyperstability of generalised linear functional equations in several variables. Bull. Australian Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K.; Leśniak, Z. On Ulam’s type stability of the linear equation and related issues. Discret. Dyn. Nat. Soc. 2014, 2014, 536791. [Google Scholar] [CrossRef]
- Brzdęk, J.; Fošner, A. Remarks on the stability of Lie homomorphisms. J. Math. Anal. Appl. 2013, 400, 585–596. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Xu, B.; Zhang, W. Stability of functional equations in single variable. J. Math. Anal. Appl. 2003, 288, 852–869. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; Popa, D.; Xu, B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 2011, 74, 324–330. [Google Scholar] [CrossRef]
- Xu, B.; Brzdęk, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pac. J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Gao, J. On the stability of the linear mapping in 2-normed spaces. Nonlinear Funct. Anal. Appl. 2009, 14, 801–807. [Google Scholar]
- Brzdęk, J.; Ciepliński, K. Hyperstability and superstability. Abstr. Appl. Anal. 2013, 2013, 401756. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.C.; Park, W.G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int. J. Math. Anal. (Ruse) 2012, 6, 951–961. [Google Scholar]
- Cho, Y.J.; Park, C.; Eshaghi Gordji, M. Approximate additive and quadratic mappings in 2-Banach spaces and related topics. Int. J. Nonlin. Anal. Appl. 2012, 3, 75–81. [Google Scholar]
- Almahalebi, M.; Kabbaj, S. A fixed point approach to stability of the quartic equation in 2-Banach spaces. J. Math. Comput. Sci. 2013, 3, 972–984. [Google Scholar]
- Arunkumar, M. Stability of n-dimensional additive functional equation in generalized 2-normed space. Demonstr. Math. 2016, 49, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Rassias, J.M.; Arunkumar, M.; Sathya, E.; Kumar, N.M. Solution and stability of a acq functional equation in generalized 2-normed spaces. Int. J. Fuzzy Math. Arch. 2015, 7, 213–224. [Google Scholar]
- Almahalebi, M.; Chahbi, A.; Kabbaj, S. A fixed point approach to the stability of a bi-cubic functional equations in 2-Banach spaces. Palest. J. Math. 2016, 5, 220–227. [Google Scholar]
- Ciepliński, K. Approximate multi-additive mappings in 2-Banach spaces. Bull. Iranian Math. Soc. 2015, 41, 785–792. [Google Scholar]
- Ciepliński, K.; Xu, T.Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J. Math. 2013, 29, 159–166. [Google Scholar] [CrossRef]
- Park, W.G. Approximate additive mappings in 2-Banach spaces and related topics. J. Math. Anal. Appl. 2011, 376, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.M.; Patel, A.B. Stability of quadratic functional equations in 2-Banach space. Gen. Math. Notes 2013, 15, 1–13. [Google Scholar]
- Kim, C.I.; Jung, K.H. Stability of a cubic functional equation in 2-normed spaces. J. Appl. Math. Inf. 2014, 32, 817–825. [Google Scholar] [CrossRef]
- Eivani, S.; Ostadbashi, S. Approximate mixed additive and quadratic functional in 2-Banach spaces. Casp. J. Math. Sci. (CJMS) 2015, 4, 167–173. [Google Scholar]
- Arunkumar, M.; Bodaghi, A.; Rassias, J.M.; Sathya, E. The general solution and approximations of a decic type functional equation in various normed spaces. J. Chungcheong Math. Soc. 2016, 29, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Murthy, S.; Govindhan, V.; Velan, M.S.S. Solution and stability of two types of n-dimensional quartic functional equation in generalized 2-normed spaces. Int. J. Pure Appl. Math. 2016, 111, 249–272. [Google Scholar] [CrossRef] [Green Version]
- Arunkumar, M.; Murthy, S.; Namachivayam, T.; Ganapathy, G. Stability of n-dimensional quartic functional equation in generalized 2-normed spaces using two different methods. Malaya J. Math. 2015, 1, 242–251. [Google Scholar]
- Eskandani, G.Z.; Gavruta, P. Hyers-Ulam-Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 2012, 5, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; El-hady, E.-s. On approximately additive mappings in 2-Banach spaces. Bull. Australian Math. Soc. 2020, 101, 299–310. [Google Scholar] [CrossRef]
- Ghali, R.E.; Kabbaj, S. 2-Banach stability results for the radical cubic functional equation related to quadratic mapping. J. Linear Topol. Algebra (JLTA) 2020, 9, 35–51. [Google Scholar]
- EL-Fassi, I.-I. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J. Math. Anal. Appl. 2017, 455, 2001–2013. [Google Scholar] [CrossRef]
- Sayar, K.Y.N.; Bergam, A. Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem. J. Fixed Point Theory Appl. 2020, 22, 1–16. [Google Scholar] [CrossRef]
- Aiemsomboon, L.; Sintunavarat, W. On new approximations for generalized Cauchy functional equations using Brzdęk and Ciepliński’s fixed point theorems in 2-Banach spaces. Acta Math. Sci. 2020, 40, 824–834. [Google Scholar] [CrossRef]
- Sayar, K.Y.N.; Bergam, A. Some hyperstability results for a Cauchy-Jensen type functional equation in 2-Banach spaces. Proyecciones (Antofagasta) 2020, 39, 73–89. [Google Scholar] [CrossRef]
- AL-Ali, S.A.; Almahalebi, M.; Elkettani, Y. Stability of a general p-radical functional equation related to additive mappings in 2-Banach spaces. Proyecciones (Antofagasta) 2021, 40, 49–71. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I. New stability results for the radical sextic functional equation related to quadratic mappings in (2,β)-Banach spaces. J. Fixed Point Theory Appl. 2018, 20, 1–17. [Google Scholar] [CrossRef]
- Park, W.G.; Bae, J.H. Hyers-Ulam stability of quadratic forms in 2-normed spaces. Demonstr. Math. 2019, 52, 496–502. [Google Scholar] [CrossRef]
- El-hady, E.-s. On stability of the functional equation of p-Wright affine functions in 2-Banach spaces. In Ulam Type Stability; Springer: Cham, Switzerland, 2019; pp. 131–141. [Google Scholar]
- El-hady, E.-s. On stability of the functional equation of p-Wright affine functions in (2,α)-Banach spaces. J. Egypt. Math. Soc. 2019, 27, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Gordji, M.E.; Ghaemi, M.B.; Majani, H. Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces. J. Inequal. Appl. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, C. The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed space. Korean J. Math. 2014, 22, 339–348. [Google Scholar]
- Alotaibi, A.; Mohiuddine, S.A. On the stability of a cubic functional equation in random 2-normed spaces. Adv. Differ. Equ. 2012, 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, M.A. Stability of Pexiderized quadratic functional equation in random 2-normed spaces. J. Funct. Spaces 2015, 2015, 828967. [Google Scholar] [CrossRef] [Green Version]
- Khodaei, H.; Gordji, M.E.; Kim, S.S.; Cho, Y.J. Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 2012, 395, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Ciepliński, K. On Ulam stability of a functional equation. Results Math. 2020, 75, 1–11. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. A fixed point theorem in n-Banach spaces and Ulam stability. J. Math. Anal. Appl. 2019, 470, 632–646. [Google Scholar] [CrossRef]
- Choy, J.; Chu, H.Y.; Kim, A. A Remark for the Hyers-Ulam stabilities on n-Banach spaces. Axioms 2021, 10, 2. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I.; Elqorachi, E.; Khodaei, H. A fixed point approach to stability of k-th radical functional equation in non-archimedean (n, β)-Banach spaces. Bull. Iran. Math. Soc. 2021, 47, 487–504. [Google Scholar] [CrossRef]
- Yang, X.; Chang, L.; Liu, G.; Shen, G. Stability of functional equations in (n, β)-normed spaces. J. Inequal. Appl. 2015, 2015, 112. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahyrycz, A.; Brzdęk, J.; El-hady, E.-s.; Leśniak, Z. On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry 2021, 13, 2200. https://doi.org/10.3390/sym13112200
Bahyrycz A, Brzdęk J, El-hady E-s, Leśniak Z. On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry. 2021; 13(11):2200. https://doi.org/10.3390/sym13112200
Chicago/Turabian StyleBahyrycz, Anna, Janusz Brzdęk, El-sayed El-hady, and Zbigniew Leśniak. 2021. "On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey" Symmetry 13, no. 11: 2200. https://doi.org/10.3390/sym13112200
APA StyleBahyrycz, A., Brzdęk, J., El-hady, E. -s., & Leśniak, Z. (2021). On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry, 13(11), 2200. https://doi.org/10.3390/sym13112200