Quantum Steering in Two- and Three-Mode ??-Symmetric Systems
Abstract
:1. Introduction
2. The Models
3. Steering
3.1. Two-Mode System
3.2. Three-Mode System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.F.; Gong, Z.R.; Zhu, H.B.; Wang, Z.H. symmetric phase transition and photonic transmission in an optical trimer system. Opt. Express 2017, 25, 17249–17257. [Google Scholar] [CrossRef] [PubMed]
- Klaiman, S.; Günther, U.; Moiseyev, N. Visualization of Branch Points in -Symmetric Waveguides. Phys. Rev. Lett. 2008, 101, 080402. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V. Optical lattices with PT symmetry are not transparent. J. Phys. A Math. Theor. 2008, 41, 244007. [Google Scholar] [CrossRef]
- Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of -Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 093902. [Google Scholar] [CrossRef] [Green Version]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity–time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Longhi, S.; Della Valle, G.; Staliunas, K. Goos-Hänchen shift in complex crystals. Phys. Rev. A 2011, 84, 042119. [Google Scholar] [CrossRef]
- Kozlov, M.; Tsironis, G.P. Control of power in parity-time symmetric lattices. New J. Phys. 2015, 17, 105004. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Ramezani, H.; Eichelkraut, T.; Kottos, T.; Cao, H.; Christodoulides, D.N. Unidirectional Invisibility Induced by -Symmetric Periodic Structures. Phys. Rev. Lett. 2011, 106, 213901. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, Y.N.; Thompson, C.; Vemuri, G. Tunable waveguide lattices with nonuniform parity-symmetric tunneling. Phys. Rev. A 2011, 83, 063817. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Musslimani, Z.H. Beam Dynamics in Symmetric Optical Lattices. Phys. Rev. Lett. 2008, 100, 103904. [Google Scholar] [CrossRef]
- Vemuri, H.; Vavilala, V.; Bhamidipati, T.; Joglekar, Y.N. Dynamics, disorder effects, and -symmetry breaking in waveguide lattices with localized eigenstates. Phys. Rev. A 2011, 84, 043826. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, Y.N.; Thompson, C.; Scott, D.D.; Vemuri, G. Optical waveguide arrays: Quantum effects and PT symmetry breaking. Eur. Phys. J. Appl. Phys. 2013, 63, 30001. [Google Scholar] [CrossRef] [Green Version]
- Longhi, S. Bound states in the continuum in PT-symmetric optical lattices. Opt. Lett. 2014, 39, 1697–1700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chai, J.; Huang, J.; Chen, Z.; Li, Y.; Malomed, B.A. Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT-symmetric defect. Opt. Express 2014, 22, 13927–13939. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.J.; Molina, M.I.; Turitsyn, S.K.; Kivshar, Y.S. Nonlinear multicore waveguiding structures with balanced gain and loss. Phys. Rev. A 2015, 91, 023822. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Kevrekidis, P.G.; Malomed, B.A. Nonlinear Modes and Symmetries in Linearly Coupled Pairs of-Invariant Dimers. Stud. Appl. Math. 2014, 133, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Kevrekidis, P.G.; Pelinovsky, D.E.; Tyugin, D.Y. Nonlinear dynamics in PT-symmetric lattices. J. Phys. A Math. Theor. 2013, 46, 365201. [Google Scholar] [CrossRef] [Green Version]
- Barashenkov, I.V. Hamiltonian formulation of the standard -symmetric nonlinear Schrödinger dimer. Phys. Rev. A 2014, 90, 045802. [Google Scholar] [CrossRef] [Green Version]
- Lumer, Y.; Plotnik, Y.; Rechtsman, M.C.; Segev, M. Nonlinearly Induced PT Transition in Photonic Systems. Phys. Rev. Lett. 2013, 111, 263901. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, H.; Kottos, T.; El-Ganainy, R.; Christodoulides, D.N. Unidirectional nonlinear -symmetric optical structures. Phys. Rev. A 2010, 82, 043803. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hao, T.; Li, W.; Capmany, J.; Zhu, N.; Li, M. Observation of parity-time symmetry in microwave photonics. Light. Sci. Appl. 2018, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Sheng, J.; Yang, L.; Miri, M.A.; Christodoulides, D.N.; He, B.; Zhang, Y.; Xiao, M. Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices. Phys. Rev. Lett. 2016, 117, 123601. [Google Scholar] [CrossRef]
- Regensburger, A.; Bersch, C.; Miri, M.A.; Onishchukov, G.; Christodoulides, D.N.; Peschel, U. Parity–time synthetic photonic lattices. Nature 2012, 488, 167–171. [Google Scholar] [CrossRef]
- Bittner, S.; Dietz, B.; Günther, U.; Harney, H.L.; Miski-Oglu, M.; Richter, A.; Schäfer, F. Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard. Phys. Rev. Lett. 2012, 108, 024101. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Jiang, X.; Hua, S.; Yang, C.; Wen, J.; Jiang, L.; Li, G.; Wang, G.; Xiao, M. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics 2014, 8, 524–529. [Google Scholar] [CrossRef]
- Sheng, J.; Miri, M.A.; Christodoulides, D.N.; Xiao, M. -symmetric optical potentials in a coherent atomic medium. Phys. Rev. A 2013, 88, 041803. [Google Scholar] [CrossRef] [Green Version]
- Hang, C.; Huang, G.; Konotop, V.V. Symmetry with a System of Three-Level Atoms. Phys. Rev. Lett. 2013, 110, 083604. [Google Scholar] [CrossRef] [Green Version]
- Chtchelkatchev, N.M.; Golubov, A.A.; Baturina, T.I.; Vinokur, V.M. Stimulation of the Fluctuation Superconductivity by Symmetry. Phys. Rev. Lett. 2012, 109, 150405. [Google Scholar] [CrossRef] [Green Version]
- Wrona, I.; Jarosik, M.; Szczȩśniak, R.; Szewczyk, K.; Stala, M.; Leoński, W. Interaction of the hydrogen molecule with the environment: Stability of the system and the symmetry breaking. Sci. Rep. 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Discussion of Probability Relations between Separated Systems. Math. Proc. Camb. Phil. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 2007, 98, 140402. [Google Scholar] [CrossRef]
- Jones, S.J.; Wiseman, H.M.; Doherty, A.C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 2007, 76, 052116. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, E.G.; Jones, S.J.; Wiseman, H.M.; Reid, M.D. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 2009, 80, 032112. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G.; Nery, R.; Souto, P.; Walborn, S. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 2015, 6, 7941. [Google Scholar] [CrossRef] [Green Version]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.Y.; Sakhdari, M.; Hajizadegan, M.; Cui, Q.; Cheng, M.M.C.; El-Ganainy, R.; Alù, A. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nat. Electron. 2018, 1, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 1992, 68, 3663–3666. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 1989, 40, 913–923. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; He, Q.Y.; Reid, M.D.; Wiseman, H.M. Unified criteria for multipartite quantum nonlocality. Phys. Rev. A 2011, 84, 032115. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.K. Spreading of entanglement and steering along small Bose-Hubbard chains. Phys. Rev. A 2015, 92, 033627. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Duc, V.; Kalaga, J.K.; Leoński, W.; Nowotarski, M.; Gruszka, K.; Kostrzewa, M. Quantum Steering in Two- and Three-Mode ??-Symmetric Systems. Symmetry 2021, 13, 2201. https://doi.org/10.3390/sym13112201
Le Duc V, Kalaga JK, Leoński W, Nowotarski M, Gruszka K, Kostrzewa M. Quantum Steering in Two- and Three-Mode ??-Symmetric Systems. Symmetry. 2021; 13(11):2201. https://doi.org/10.3390/sym13112201
Chicago/Turabian StyleLe Duc, Vinh, Joanna K. Kalaga, Wiesław Leoński, Mateusz Nowotarski, Konrad Gruszka, and Małgorzata Kostrzewa. 2021. "Quantum Steering in Two- and Three-Mode ??-Symmetric Systems" Symmetry 13, no. 11: 2201. https://doi.org/10.3390/sym13112201
APA StyleLe Duc, V., Kalaga, J. K., Leoński, W., Nowotarski, M., Gruszka, K., & Kostrzewa, M. (2021). Quantum Steering in Two- and Three-Mode ??-Symmetric Systems. Symmetry, 13(11), 2201. https://doi.org/10.3390/sym13112201