Completeness of b−Metric Spaces and Best Proximity Points of Nonself Quasi-Contractions
Abstract
:1. Introduction and Preliminaries
- (a)
- if and only if for all
- (a)
- for all
- (a)
- for all
- (i)
- convergent if there is an such that, for every there exists satisfying for all that is, or as
- (ii)
- Cauchy if for every there exists such that for all and that is, for all
- (b)
- is a metric space.
- (b)
- For all
- (b)
- For all
- (b)
- For and there is a so that
- (b)
- For and there is a so that
- (b)
- if and only if where is the closure of A in
- (b)
- For any sequence in
- 1-
- A mapping is a generalized multivalued Ciric Suzuki type (shortly type) non-self quasi-contraction if there exists an with such thatfor all and for some
- 1-
- A mapping is a generalized Ciric Suzuki type (shortly type) non-self quasi-contraction if there exists an with such thatfor all and for some .
2. Existence of BPPs of Generalized Multivalued Nonself Quasi-Contractions
3. Completeness of Metric Spaces
- (a)
- for
- (b)
- is non-empty and for each and the pair satisfies the weak property.Let be a class of mappings that satisfies:
- (c)
- forLet be a class of mappings that satisfies (d) and
- (d)
- is denumerable,
- (e)
- every is closed.
- 1.
- The metric space is complete.
- 2.
- is non-empty for every mapping and for all with
- 3.
- is non-empty for every mapping and for all with
- 4.
- is non-empty for every mapping and some with
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur applications auxéquations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Gopal, D.; Kumam, P.; Abbas, M. Background and Recent Developments of Metric Fixed Point Theory; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hussain, N.; Taoudi, M.A. Krasnosel’skii-type fixed point theorems with applications to Volterra integral equations. Fixed Point Theory Appl. 2013, 2013, 196. [Google Scholar] [CrossRef] [Green Version]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Pathak, H.K.; Cho, Y.J.; Kang, S.M.; Lee, B.S. Fixed point theorems for compatible mappings of type P and applications to dynamic programming. Le Mat. 1995, 50, 15–33. [Google Scholar]
- Singh, S.P. An application of a fixed point theorem to approximation theory. J. Approx. Theory 1979, 25, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Ciric, L. A generalization of Banach contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar]
- Nadler, S.B., Jr. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Amini Harandi, A. Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl. Math. Lett. 2011, 24, 1791–1794. [Google Scholar] [CrossRef]
- An, T.V.; Dung, N.V.; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2015, 109, 175–198. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b−metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Dung, N.V.; Sintunavarat, W. Fixed point theory in b−metric spaces. In Metric Structures and Fixed Point Theory; Chapman and Hall/CRC: London, UK, 2021; pp. 33–66. [Google Scholar]
- Czerwik, S.; Dlutek, K.; Singh, S.L. Round-off stability of iteration procedures for operators in b−metric spaces. J. Natur. Phys. Sci. 1997, 11, 87–94. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b−metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Afshari, H. Solution of fractional differential equations in quasi-b−metric and b−metric-like spaces. Adv. Differ. Equ. 2019, 2019, 285. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrovic, S. A fixed point theorem for set valued quasi-contractions in b−metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef] [Green Version]
- Ciric, L.; Abbas, M.; Rajovic, M.; Ali, B. Suzuki type fixed point theorems for generalized multivalued mappings on a set endowed with two b−metric. Appl. Math. Comput. 2012, 219, 1712–1723. [Google Scholar]
- Alolaiyan, H.; Ali, B.; Abbas, M. Characterization of a b−metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications. An. St. Univ. Ovidius Constanta Ser. Mat. 2019, 27, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Abbas, M.; Sen, M.D.L. Completeness of metric spaces and the fixed points of generalized multivalued quasi-contractions. Discret. Nat. Soc. 2020, 2020, 5183291. [Google Scholar]
- Fan, K. Extensions of two fixed point theorems of F.E. Browder. Math. Z. 1969, 112, 234–240. [Google Scholar] [CrossRef]
- Hussain, N.; Khan, A.R.; Agarwal, R.P. Krasnosel’skii and Ky Fan type fixed point theorems in ordered Banach spaces. J. Nonlinear Convex Anal. 2010, 11, 475–489. [Google Scholar]
- Sehgal, V.M.; Singh, S.P. A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 1988, 102, 534–537. [Google Scholar]
- Prolla, J.B. Fixed point theorems for set valued mappings and existence of best approximations. Numer. Funct. Anal. Optim. 1983, 5, 449–455. [Google Scholar] [CrossRef]
- Reich, S. Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Basha, S.S.; Shahzad, N. Best proximity point theorems for generalized proximal contraction. Fixed Point Theory Appl. 2012, 2012, 42. [Google Scholar] [CrossRef] [Green Version]
- Basha, S.S. Best proximity point theorems. J. Approx. Theory 2011, 163, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Mishra, L.N.; Dewangan, V.; Mishra, V.N.; Karateke, S. Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b−metric spaces. J. Math. Comput. Sci. 2021, 22, 97–109. [Google Scholar] [CrossRef]
- Abkar, A.; Gabeleh, M. A best proximity point theorem for Suzuki type contraction non-self mappings. Fixed Point Theory 2013, 14, 281–288. [Google Scholar]
- Hussain, N.; Latif, A.; Salimi, P. Best proximity point results for modified Suzuki (α−ψ)−proximal contractions. Fixed Point Theory Appl. 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- George, R.; Alaca, C.; Reshma, K.P. On best proximity points in b−metric space. J. Nonlinear Anal. Appl. 2015, 1, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Gabeleh, M.; Plebaniak, R. Global optimality results for multivalued non-self mappings in b−metric spaces. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2018, 112, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.Q.; Cobzas, S.; Soubeyran, A. Variational principles, completeness and the existence of traps in behavioral sciences. Ann. Oper. Res. 2018, 269, 53–79. [Google Scholar] [CrossRef]
- Cobzaş, S. Fixed points and completeness in metric and in generalized metric spaces. arXiv 2015, arXiv:1508.05173. [Google Scholar] [CrossRef]
- Connell, E.H. Properties of fixed point spaces. Proc. Am. Math. Soc. 1959, 10, 974–979. [Google Scholar] [CrossRef]
- Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136, 1861–1869. [Google Scholar] [CrossRef]
- Bates, L. A symmetry completeness criterion for second-order differential equations. Proc. Am. Math. Soc. 2004, 132, 1785–1786. [Google Scholar] [CrossRef]
- Rein, G. On future geodesic completeness for the Einstein–Vlasov system with hyperbolic symmetry. Math. Proc. Camb. Phil. Soc. 2004, 137, 237–244. [Google Scholar] [CrossRef] [Green Version]
- An, T.V.; Tuyen, L.Q.; Dung, N.V. Stone-type theorem on b−metric spaces and applications. Topol. Appl. 2015, 185, 50–64. [Google Scholar] [CrossRef]
- Singh, S.L.; Czerwick, S.; Krol, K.; Singh, A. Coincidences and fixed points of hybrid contractions. Tamsui Oxford Univ. J. Math. Sci. 2008, 24, 401–416. [Google Scholar]
- Suzuki, T. Basic inequality on a b−metric space and its applications. J. Inequalities Appl. 2017, 2017, 256. [Google Scholar] [CrossRef]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Rouhani, B.D.; Moradi, S. Common fixed point of multivalued generalized φ-weak contractive mappings. Fixed Point Theory Appl. 2010, 2010, 708984. [Google Scholar]
- Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 1995, 192, 655–666. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.A.; Ali, B. Completeness of b−Metric Spaces and Best Proximity Points of Nonself Quasi-Contractions. Symmetry 2021, 13, 2206. https://doi.org/10.3390/sym13112206
Khan AA, Ali B. Completeness of b−Metric Spaces and Best Proximity Points of Nonself Quasi-Contractions. Symmetry. 2021; 13(11):2206. https://doi.org/10.3390/sym13112206
Chicago/Turabian StyleKhan, Arshad Ali, and Basit Ali. 2021. "Completeness of b−Metric Spaces and Best Proximity Points of Nonself Quasi-Contractions" Symmetry 13, no. 11: 2206. https://doi.org/10.3390/sym13112206
APA StyleKhan, A. A., & Ali, B. (2021). Completeness of b−Metric Spaces and Best Proximity Points of Nonself Quasi-Contractions. Symmetry, 13(11), 2206. https://doi.org/10.3390/sym13112206