Bolometric Double Beta Decay Experiments: Review and Prospects
Abstract
:1. Introduction
2. Neutrinoless Double Beta Decay
3. Challenges for Double Beta Decay Searches
Isotope | Isotopic Abundance (%) | (keV) | T Limit, yr | Detection Technology | Ref., Year |
---|---|---|---|---|---|
Ca | 0.2 | 4263 | 6.2 × 10 | Inorganic scintillators | [28] 2020 |
Ge | 7.8 | 2039 | 1.8 × 10 | Semicoductors | [14] 2020 |
Se | 9.2 | 2998 | 4.7 × 10 | Scintillating bolometers | [16,17] 2021 |
Zr | 2.8 | 3348 | 9.2 × 10 | Tracking calorimeter | [29] 2010 |
Mo | 9.6 | 3035 | 1.8 × 10 | Scintillating bolometers | [18,19] 2021 |
Cd | 7.6 | 2813 | 1.9 × 10 | Inorganic scintillators | [30] 2016 |
Sn | 5.79 | 2288 | — | — | |
Te | 34.1 | 2527 | 3.2 × 10 | Pure bolometers | [15] 2020 |
Xe | 8.9 | 2459 | 1.07 × 10 | Liquid scintillator | [13] 2016 |
Nd | 5.6 | 3371 | 2.0 × 10 | Tracking calorimeter | [20] 2016 |
U | 99.3 | 1150 | 2 × 10 | Geochem. | [31] 1991 |
4. Bolometers
4.1. Phonon Sensors
- Neutron Transmutation Doped (NTD) Ge thermistors are critically doped semiconductors operated below the metal–insulator transition. They can cover a wide range of temperatures but have relatively slow signals (intrinsically, in the ms time scale). The semiconductor element is usually glued to the absorber [34], typically by two-component epoxy, but other solutions are under investigation such as UV-curing glue. They are easily reproducible on large scales. NTDs do not require electronics at cold stages—although this can help in some situations. The signal consists of a voltage change, and only two wires per sensor are needed for bias and read out. The typical NTD response is ∼10 ms for the rise time and hundreds of ms for the decay time in large mass crystals.
- Transition Edge Sensors (TES) consist of superconductive films operated in a narrow neighborhood around the transition temperature , where the resistance of the sensor changes abruptly with small variations of the temperature. TESs can be directly evaporated on the absorber surface, providing a much faster response and giving the sensitivity to athermal phonons rather than thermal in the case of gluing [35]. Due to the low impedance, optimal readout requires the use of superconducting quantum interference devices (SQUIDs), which may be a complication, especially in the case of hundreds or thousands of channels.
- Metallic Magnetic Calorimeters (MMC) use materials with magnetization–temperature dependence. They have high energy resolution and fast signals, but they also require a readout system based on SQUIDs [36].
4.2. Cryostats
4.3. Bolometers for 02 Searches
- (a)
- Crystal compounds that can contain the isotopes of interest—it should be possible to embed such isotope into a dielectric single crystal, and such crystals should be grown in large quantities with good reproducibility;
- (b)
- Size of a cryostat—currently, the largest cryostat is the CUORE one, which is able to host around 1 cubic meter of detectors. Scaling beyond this size was never done before, and requires dedicated technological research;
- (c)
- Available technologies for background reduction.
5. CUORE Experiment: A Saga of TeO Bolometers
- In pure bolometers, without additional active tools for background rejection, the background coming from surface contamination—either of the crystals themselves or of the material surrounding them—dominate at the level of counts/keV/kg/yr, see Figure 3. This contribution is flat in the energy spectrum over a large range, as the energy is degraded due to a partial absorption in passive materials. This range covers the ROI not only of Te but also of all the most promising candidates.
- The subdominant contribution is due to external background, at the level of counts/keV/kg/yr. This is specific of candidates—as Te—with a ROI below ∼2.6 MeV, where the bulk of the natural radioactivity is located. Above this value, the background level drops by at least an order of magnitude. This contribution can in principle be reduced by a stricter selection of the materials for the cryostat and the shielding.
6. Approaches to Reduce Different Background Contributions
6.1. Background
6.1.1. BINGO
- The use of an active shield, based on ZnWO or BGO scintillators with bolometric readout, to suppress the external background;
- The increase of the light detector sensitivity thanks to Neganov–Luke amplification;
- A new type of detector assembly that will reduce the total surface radioactivity contribution.
6.2. Background
6.2.1. CUPID-0: ZnSe Demonstrator
6.2.2. CUPID-Mo: LiMoO Demonstrator
6.2.3. AMoRE Experiment
- AMoRE-pilot: R&D phase, measurements of 6 CaMoO crystals (0.9 kg of Mo), is finished;
- AMoRE-I, 13 CaMoO and 6 LiMoO crystals (6 kg) is ongoing;
- AMoRE-II is the final phase, planned to have ∼100 kg of Mo.
6.2.4. Ca: CaF Bolometers
6.2.5. Cd Bolometers: R&D
6.2.6. Cherenkov Light Tagging: Neganov–Luke Enhanced Bolometers
6.2.7. Future: CUPID Experiment
- The calculations of nuclear matrix elements show that Mo may have one of the shortest half-lives among 02 candidates [75];
- It is possible to have a large scale enrichment thanks to gas-centrifuge enrichment;
- The CUPID-Mo experiment demonstrated the high performance of scintillating LiMoO bolometers, as well as radiopurity, efficient rejection, reproducibility and stability.
6.3. Surface Background
6.3.1. Surface Rejection: CROSS Project
6.4. 22 Decay
7. Conclusions
Funding
Conflicts of Interest
References
- Iachello, F. Open problems in neutrino physics. J. Phys. 2018, 1056, 012027. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Harmer, D.S.; Hoffman, K.C. Search for Neutrinos from the Sun. Phys. Rev. Lett. 1968, 20, 1205–1209. [Google Scholar] [CrossRef]
- Tretyak, V.I.; Zdesenko, Y.G. Tables of double beta decay data—An update. At. Data Nucl. Data Tables 2002, 80, 83–116. [Google Scholar] [CrossRef]
- Barabash, A. Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review. Universe 2020, 6, 159. [Google Scholar] [CrossRef]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Measurement of the 2νββ Decay Half-Life of 130Te with CUORE. Phys. Rev. Lett. 2021, 126, 171801. [Google Scholar] [CrossRef] [PubMed]
- Furry, W.H. On Transition Probabilities in Double Beta Desintegration. Phys. Rev. 1939, 56, 1184–1193. [Google Scholar] [CrossRef]
- Stoica, S.; Mirea, M. Phase Space Factors for Double-Beta Decays. Front. Phys. 2019, 7, 12. [Google Scholar] [CrossRef]
- Ejiri, H. Nuclear Matrix Elements for β and ββ Decays and Quenching of the Weak Coupling gA in QRPA. Front. Phys. 2019, 7, 30. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef] [Green Version]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics:Neutrino Masses, Mixing, and Oscillations. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 2020, 178. [Google Scholar] [CrossRef]
- NuFIT 5.0. 2020. Available online: www.nu-fit.org (accessed on 30 October 2021).
- Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final Result of CUPID-0 Phase-I in the Search for the 82Se Neutrinoless Double-β Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [Green Version]
- Pagnanini, L.; On Behalf of the CUPID-0 Collaboration. The ultimate limit on 82Se neutrinoless double-beta decay search with CUPID-0. In Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. New Limit for Neutrinoless Double-Beta Decay of 100Mo from the CUPID-Mo Experiment. Phys. Rev. Lett. 2021, 126, 181802. [Google Scholar] [CrossRef]
- Welliver, B.; On Behalf of the CUPID-Mo Collaboration. New results from the CUPID-Mo demonstrator on the 100Mo 0νββ decay half-life. In Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; et al. Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. Phys. Rev. D 2017, 95, 012007. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Results of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment. Phys. Rev. D 2015, 92, 072011. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Bakalyarov, A.M.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; et al. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector. Phys. Rev. D 2016, 93, 112008. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Basharina-Freshville, A.; Blot, S.; Bongrand, M.; Bourgeois, C.; Breton, D.; Brudanin, V.; Burešovà, H.; Busto, J.; Caffrey, A.J.; et al. Calorimeter development for the SuperNEMO double beta decay experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 2017, 868, 98–108. [Google Scholar] [CrossRef]
- Biassoni, M.; Cremonesi, O. Search for neutrino-less double beta decay with thermal detectors. Prog. Part. Nucl. Phys. 2020, 114, 103803. [Google Scholar] [CrossRef]
- Giuliani, A.; Cadenas, J.J.G.; Pascoli, S.; Previtali, E.; Saakyan, R.; Schaeffner, K.; Schoenert, S. Double Beta Decay APPEC Committee Report. arXiv 2020, arXiv:hep-ex/1910.04688. [Google Scholar]
- Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al. Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors. Eur. Phys. J. C 2014, 74, 3096. [Google Scholar] [CrossRef] [Green Version]
- Tetsuno, K.; Ajimura, S.; Akutagawa, K.; Chan, W.M.; Fushimi, K.; Hazama, R.; Iida, T.; Ikeyama, Y.; Khai, B.T.; Kishimoto, T.; et al. Status of 48Ca double beta decay search and its future prospect in CANDLES. J. Phys. Conf. Ser. 2020, 1268, 012132. [Google Scholar] [CrossRef]
- Argyriades, J.; Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Broudin-Bay, G.; Brudanin, V.; Caffrey, A.J.; et al. Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A 2010, 847, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; d’Angelo, S.; Incicchitti, A.; et al. Search for double beta decay of 116Cd with enriched 116CdWO4 crystal scintillators (Aurora experiment). J. Phys. Conf. Ser. 2016, 718, 062009. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, A.L.; Economou, T.E.; Cowan, G.A. Double beta decay of U-238. Phys. Rev. Lett. 1991, 67, 3211–3214. [Google Scholar] [CrossRef]
- Giuliani, A. Particle and radiation detection with low-temperature devices. Phys. B Condens. Matter 2000, 280, 501–508. [Google Scholar] [CrossRef]
- Pirro, S.; Mauskopf, P. Advances in Bolometer Technology for Fundamental Physics. Annu. Rev. Nucl. Part. Sci. 2017, 67, 161–181. [Google Scholar] [CrossRef]
- Wang, N.; Wellstood, F.C.; Sadoulet, B.; Haller, E.E.; Beeman, J. Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. Phys. Rev. B 1990, 41, 3761–3768. [Google Scholar] [CrossRef] [PubMed]
- Appel, J.W.; Galeazzi, M. Two models for bolometer and microcalorimeter detectors with complex thermal architectures. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 562, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Bandler, S.R.; Enss, C.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. Metallic magnetic bolometers for particle detection. J. Low Temp. Phys. 1993, 93, 709–714. [Google Scholar] [CrossRef]
- Lee, C.; Jo, H.; Kang, C.; Kim, G.B.; Kim, I.; Kim, Y.; Lee, H.J.; So, J. Vibration Mitigation for a Cryogen-Free Dilution Refrigerator for the AMoRE-Pilot Experiment. J. Low Temp. Phys. 2018, 193, 786–792. [Google Scholar] [CrossRef]
- Maisonobe, R.; Billard, J.; De Jesus, M.; Dumoulin, L.; Juillard, A.; Marnieros, S.; Misiak, D.; Sayah, S.; Vagneron, L. Experimental study and modeling cryogenic detectors decoupling within dry cryostat. J. Low Temp. Phys. 2017, 193, 819–826. [Google Scholar] [CrossRef]
- Alduino, C.; Alessandria, F.; Balata, M.; Biare, D.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Ceruti, G.; et al. The CUORE cryostat: An infrastructure for rare event searches at milliKelvin temperatures. Cryogenics 2019, 102, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sharma, V.; Kumar, A.; Pandey, A.; Singh, V.; Wong, H.T. Required sensitivity to search the neutrinoless double beta decay in 124Sn. Indian J. Phys. 2018, 94, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bacrania, M.K.; Hoover, A.S.; Karpius, P.J.; Rabin, M.W.; Rudy, C.R.; Vo, D.T.; Beall, J.A.; Bennett, D.A.; Doriese, W.B.; Hiltonm, G.C.; et al. Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and Gamma-Ray Spectroscopy. IEEE Trans. Nucl. Sci. 2009, 56, 2299–2302. [Google Scholar] [CrossRef]
- Nanal, V. Search for neutrinoless double beta decay in 124Sn. EPJ Web Conf. 2014, 66, 08005. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, A.; Garai, A.; Krishnamoorthy, H.; Gupta, G.; Reza, A.; Thamizhavel, A.; Nanal, V.; Pillay, R.G.; Shrivastava, A. Studies on β ⇌ α transition in Sn and Sn-rich alloys for a cryogenic tin bolometer. Mater. Res. Express 2019, 6, 076521. [Google Scholar] [CrossRef]
- Andreotti, E.; Arnaboldi, C.; Avignone, F.T.; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Bellini, F.; Brofferio, C.; Bryant, A.; et al. 130Te neutrinoless double-beta decay with CUORICINO. Astropart. Phys. 2011, 34, 822–831. [Google Scholar] [CrossRef]
- Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersani, A.; et al. Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0. Phys. Rev. Lett. 2015, 115, 102502. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.Q.; Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Avignone, F.T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T.I.; et al. CUORE Opens the Door to Tonne-scale Cryogenics Experiments. Prog. Part. Nucl. Phys. 2021, 103902. [Google Scholar] [CrossRef]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Benato, G.; et al. The projected background for the CUORE experiment. Eur. Phys. J. C 2017, 77, 543. [Google Scholar] [CrossRef]
- Singh, M.K.; Wong, H.T.; Singh, L.; Sharma, V.; Singh, V.; Yue, Q. Exposure-background duality in the searches of neutrinoless double beta decay. Phys. Rev. D 2020, 101, 013006. [Google Scholar] [CrossRef] [Green Version]
- Poda, D.; Giuliani, A. Low background techniques in bolometers for double-beta decay search. Int. Natl. J. (Wash.) Mod. Phys. A 2017, 32, 1743012. [Google Scholar] [CrossRef]
- Nones, C.; On Behalf of the BINGO Collaboration. BINGO: Bi-Isotope 0ν2β Next Generation Observatory. In Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Danevich, F. Radiopure tungstate and molybdate crystal scintillators for double beta decay experiments. Int. J. Mod. Phys. A 2017, 32, 17430084. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, C.; Brofferio, C.; Bryant, A.; Bucci, C.; Canonica, L.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; et al. Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 2010, 312, 2999–3008. [Google Scholar] [CrossRef] [Green Version]
- Clemenza, M.; Maiano, C.; Pattavina, L.; Previtali, E. Radon-induced surface contaminations in low background experiments. Eur. Phys. J. C 2011, 71, 1805. [Google Scholar] [CrossRef] [Green Version]
- Poda, D. Scintillation in Low-Temperature Particle Detectors. Physics 2021, 3, 473–535. [Google Scholar] [CrossRef]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of 82Se with CUPID-0. Phys. Rev. Lett. 2019, 123, 262501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, D.; Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; et al. Double beta decay results from the CUPID-0 experiment. arXiv 2020, arXiv:2012.00644. [Google Scholar]
- Pagnanini, L.; Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; et al. Results on 82Se 2νββ with CUPID-0 Phase I. J. Phys. Conf. Ser. 2020, 1643, 012025. [Google Scholar] [CrossRef]
- Azzolini, O.; Barrera, M.T.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; Capelli, S.; et al. First Result on the Neutrinoless Double-β Decay of 82Se with CUPID-0. Phys. Rev. Lett. 2018, 120, 232502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First search for Lorentz violation in double beta decay with scintillating calorimeters. Phys. Rev. D 2019, 100, 092002. [Google Scholar] [CrossRef]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Celi, E.; et al. Search for neutrinoless double beta decay of 64Zn and 70Zn with CUPID-0. Eur. Phys. J. C 2020, 80, 702. [Google Scholar] [CrossRef]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; de Boissière, T.; Bres, G.; Broniatowski, A.; et al. Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. 2017, 12, P08010. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 44. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 2020, 80, 1–11. [Google Scholar] [CrossRef]
- Lee, M.H. AMoRE: A search for neutrinoless double-beta decay of 100Mo using low-temperature molybdenum-containing crystal detectors. J. Instrum. 2020, 15, C08010. [Google Scholar] [CrossRef]
- Alenkov, V.; Bae, H.W.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; Chernyak, D.M.; Choe, J.S.; et al. First results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 2019, 79, 791. [Google Scholar] [CrossRef] [Green Version]
- Alenkov, V.; Aryal, P.; Beyer, J.; Boiko, R.S.; Boonin, K.; Buzanov, O.; Chanthima, N.; Cheoun, M.K.; Chernyak, D.M.; Choi, J.; et al. Technical Design Report for the AMoRE 0νββ Decay Search Experiment. arXiv 2015, arXiv:physics.ins-det/1512.05957. [Google Scholar]
- Yoomin, O.; On Behalf of the AMoRe Collaboration. Status of AMoRE. In Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Bucci, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Nucciotti, A.; et al. A scintillating bolometer for experiments on double beta decay. Phys. Lett. B 1998, 420, 109–113. [Google Scholar] [CrossRef]
- Li, X.; Kwon, D.H.; Tetsuno, K.; Kim, I.; Kim, H.L.; Lee, H.J.; Yoshida, S.; Kim, Y.H.; Lee, M.K.; Umehara, S.; et al. Study of a Large CaF2(Eu) Scintillating Bolometer for Neutrinoless Double Beta Decay. J. Phys. Conf. Ser. 2020, 1468, 012116. [Google Scholar] [CrossRef]
- Minami, Y.; On Behalf of the CANDLES Collaboration. Status of 48Ca double beta decay search in CANDLES. In Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Helis, D.L.; Bandac, I.C.; Barabash, A.S.; Billard, J.; Chapellier, M.; de Combarieu, M.; Danevich, F.A.; Dumoulin, L.; Gascon, J.; Giuliani, A.; et al. Neutrinoless Double-Beta Decay Searches with Enriched 116CdWO4 Scintillating Bolometers. J. Low Temp. Phys. 2019, 199, 467–474. [Google Scholar] [CrossRef]
- Bergé, L.; Chapellier, M.; de Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; et al. Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection. Phys. Rev. C 2018, 97, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Artusa, D.R.; Avignone, F.T.; Beeman, J.W.; Dafinei, I.; Dumoulin, L.; Ge, Z.; Giuliani, A.; Gotti, C.; de Marcillac, P.; Marnieros, S. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment. Phys. Lett. B 2017, 767, 321–329. [Google Scholar] [CrossRef]
- Casali, N.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Nagorny, S.; Nones, C.; Olivieri, E.; Pagnanini, L.; et al. Background Suppression in Massive TeO2 Bolometers with Neganov–Luke Amplified Light Detectors. J. Low Temp. Phys. 2015, 184, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- The CUPID Interest Group. CUPID pre-CDR. arXiv 2019, arXiv:physics.ins-det/1907.09376. [Google Scholar]
- Armatol, A.; Armengaud, E.; Armstrong, W.; Augier, C.; Avignone, F.T.; Azzolini, O.; Barabash, A.; Bari, G.; Barresi, A.; Baudin, D.; et al. Characterization of cubic MoO4 crystals for the CUPID experiment. Eur. Phys. J. C 2020, 81, 104. [Google Scholar] [CrossRef]
- Ouellet, J.; On Behalf of the CUPID Collaboration. CUPID: A Next-Generation Bolometric 0νββ Decay Experiment. In Proceedings of the Presentation at 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), online, 26 August–6 September 2021. [Google Scholar]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Background identification in cryogenic calorimeters through α-α delayed coincidences. Eur. Phys. J. C 2021, 81, 722. [Google Scholar] [CrossRef] [PubMed]
- Bandac, I.C.; Barabash, A.S.; Bergé, L.; Bourgeois, C.; Calvo-Mozota, J.M.; Carniti, P.; Chapellier, M.; de Combarieu, M.; Dafinei, I.; Danevich, F.A.; et al. Phonon-mediated crystal detectors with metallic film coating capable of rejecting α and β events induced by surface radioactivity. Appl. Phys. Lett. 2021, 118, 184105. [Google Scholar] [CrossRef]
- Bandac, I.C.; Barabash, A.S.; Bergé, L.; Bourgeois, C.; Calvo-Mozota, J.M.; Carniti, P.; Chapellier, M.; de Combarieu, M.; Dafinei, I.; Danevich, F.A.; et al. The 0ν2β-decay CROSS experiment: Preliminary results and prospects. J. High Energy Phys. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Dolinski, M.J.; Poon, A.W.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Annu. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, D.M.; Danevich, F.A.; Giuliani, A.; Olivieri, E.; Tenconi, M.; Tretyak, V.I. Random coincidence of 2ν2β decay events as a background source in bolometric 0ν2β decay experiments. Eur. Phys. J. C 2012, 72, 1989. [Google Scholar] [CrossRef] [Green Version]
- Armatol, A.; Armengaud, E.; Armstrong, W.; Augier, C.; Avignone, F.T.; Azzolini, O.; Barabash, A.; Bari, G.; Barresi, A.; Baudin, D.; et al. Novel technique for the study of pileup events in cryogenic bolometers. Phys. Rev. C 2021, 104, 015501. [Google Scholar] [CrossRef]
- Chernyak, D.M.; Danevich, F.A.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Olivieri, E.; Poda, D.V.; et al. Rejection of randomly coinciding events in MoO4 scintillating bolometers using light detectors based on the Neganov–Luke effect. Eur. Phys. J. C 2016, 77, 3. [Google Scholar] [CrossRef] [Green Version]
- Casali, N.; Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Martinez, M.; Pettinari, G.; Vignati, M. Phonon and light read out of a Li2MoO4 crystal with multiplexed kinetic inductance detectors. Eur. Phys. J. C 2019, 79, 724. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotarova, A. Bolometric Double Beta Decay Experiments: Review and Prospects. Symmetry 2021, 13, 2255. https://doi.org/10.3390/sym13122255
Zolotarova A. Bolometric Double Beta Decay Experiments: Review and Prospects. Symmetry. 2021; 13(12):2255. https://doi.org/10.3390/sym13122255
Chicago/Turabian StyleZolotarova, Anastasiia. 2021. "Bolometric Double Beta Decay Experiments: Review and Prospects" Symmetry 13, no. 12: 2255. https://doi.org/10.3390/sym13122255
APA StyleZolotarova, A. (2021). Bolometric Double Beta Decay Experiments: Review and Prospects. Symmetry, 13(12), 2255. https://doi.org/10.3390/sym13122255