Next Article in Journal
Testing an Algorithm with Asymmetric Markov-Switching GARCH Models in US Stock Trading
Previous Article in Journal
Base Point Freeness, Uniqueness of Decompositions and Double Points for Veronese and Segre Varieties
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Matching BiHom-Rota-Baxter Algebras and Related Structures

1
School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China
2
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(12), 2345; https://doi.org/10.3390/sym13122345
Submission received: 31 October 2021 / Revised: 17 November 2021 / Accepted: 18 November 2021 / Published: 6 December 2021

Abstract

:
In this paper, we introduce the notions of matching BiHom-Rota-Baxter algebras, matching BiHom-(tri)dendriform algebras, matching BiHom-Zinbiel algebras and matching BiHom-pre-Lie algebras. Moreover, we study the properties and relationships between categories of these matching BiHom-algebraic structures.

1. Introduction

The Hom-Lie algebra was introduced by Hartwig, Larsson and Silvestrov [1]. Further research on Hom-Lie algebras could be found in [2,3,4,5,6,7] and references cited therein. As a generalization of Hom- Lie algebra, Graziani etc. [8] also introduced BiHom-Lie algebras. More precisely, a BiHom-Lie algebra is a k -module g together with bilinear operation [ , ] and two commuting linear transformations p , q , for a , b , c g , satisfying
p ( [ a , b ] ) = [ p ( a ) , p ( b ) ] , q ( [ a , b ] ) = [ q ( a ) , q ( b ) ] ,
[ q ( a ) , p ( b ) ] = [ q ( b ) , p ( a ) ] ,
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] ] + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] ] + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] ] = 0 .
Identities (1) is called multiplicative, identity (2) is called BiHom-skew symmetry and identity (3) is called BiHom-Jacobi identity. Recently, BiHom-type algebras have been further developed in mathematics and mathematical physics, including BiHom-pre-Lie algebra [9], BiHom-(tri)dendriform algebra [10], BiHom-Zinbiel algebra [10] and BiHom-quadri-algebra [10].
Rota-Baxter operator was introduced by Baxter [11] in the study of the fluctuation problems in probability, and further developed by Rota [12] in combinatorics. It is widely used in many fields, such as mathematics and mathematical physics. The partial study of Rota-Baxter algebra can be seen in [9,10,13,14,15]. More precisely, a Rota-Baxter algebra of weights λ is an algebra A together with a linear operator P, and for all a , b A , it satisfies the following Rota-Baxter identity:
P ( a ) P ( b ) = P ( a P ( b ) + P ( a ) b + λ a b ) .
For more detailed introduction of Rota-Baxter algebra, please refer to Guo’s book [16]. Recently, as a generalization of Rota-Baxter algebras, the concept of matching Rota-Baxter algebra [17] came from the study of matching pre-Lie algebra [18], and from the pioneering work of Bruned, Hairer and Zambotti [19] on the algebraic renormalization of regularization structure. The research shows that the matching Rota-Baxter algebra is formed by associative Yang-Baxter equation [20] and linear structure of Rota-Baxter operators [17].
The notions of matching Hom-Rota-Baxter algebras, matching Hom-(tri)dendriform algebras and matching Hom-pre-Lie algebras are introduced by [21]. The main purpose of this paper is to extend these matching algebraic structures to the BiHom-algebras setting and study the connections between these categories of BiHom-algebras. Thus the purpose of this paper is to obtain the following categories and functor commutative graph.
Symmetry 13 02345 i001
This paper is organized as follows. In Section 2, we introduce the matching BiHom-associative, matching BiHom-pre-Lie and matching BiHom-Lie algebras. In Section 3, we explore the relationships between the matching Rota-Baxter algebras and BiHom-associative algebras. In Section 4, we give the relationships between the matching BiHom-dendriform algebras, BiHom-Zinbiel algebras and matching BiHom-tridendriform algebras. In Section 5, we study the properties and relationships between matching Rota-Baxter operators and BiHom-Lie algebras.
Throughout this paper, we work on a unitary commutative ring k of characteristic different 2, which will be the base ring of all modules, algebras, tensor products, operations as well as linear maps, where tensor products will be denoted by . We always suppose that Ω is a non-empty set. We denote Ω : = { ω : ω Ω } , { P , · , , [ , ] , , , , } , where Ω is a set indexing the linear operators or bilinear operations.

2. Matching BiHom-Associative, Matching BiHom-Pre-Lie and Matching BiHom-Lie Algebras

In this section, we study the relationship among a kind of matching BiHom-type algebras, including matching BiHom-associative algebras, compatible BiHom-associative algebras, compatible BiHom-pre-Lie algebras and compatible BiHom-Lie algebras. The main results of this section are given as the following categories commutative graph.
Symmetry 13 02345 i002
Definition 1.
A matching BiHom-associative algebra is a 4-tuple ( A , · Ω , p , q ) consisting of a k -module A, a family of bilinear operations · ω : A A A , ω Ω and two linear transformations p , q : A A , satisfying
p q = q p , p ( a · ω b ) = p ( a ) · ω p ( b ) , q ( a · ω b ) = q ( a ) · ω q ( b ) , ( a · α b ) · β q ( c ) = p ( a ) · α ( b · β c ) ,
for all a , b , c A and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it a regular matching BiHom-associative algebra.
A matching BiHom-associative algebra is called totally compatible if it satisfies
( a · α b ) · β q ( c ) = p ( a ) · β ( b · α c )
for all a , b , c A and α , β Ω .
Definition 2.
A compatible BiHom-associative algebra is a 4-tuple ( A , · Ω , p , q ) consisting of a k -module A, a family of bilinear operations · ω : A A A , ω Ω and two linear transformations p , q : A A , satisfying the following conditions,
p q = q p , p ( a · ω b ) = p ( a ) · ω p ( b ) , q ( a · ω b ) = q ( a ) · ω q ( b ) , ( a · α b ) · β q ( c ) + ( a · β b ) · α q ( c ) = p ( a ) · α ( b · β c ) + p ( a ) · β ( b · α c )
for all a , b , c A and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it a regular compatible BiHom-associative algebra.
Remark 1.
(i)
Obviously, compatible BiHom-associative algebras include matching BiHom-associative algebras or totally compatible BiHom-associative algebras.
(ii)
Matching (Hom)-associative algebras, totally compatible (Hom)-associative algebras and compatible (Hom)-associative algebras given in [17,21] are special cases of above definitions, when p = q = I d ( p = q ) .
(iii)
If Ω is a singleton, BiHom-associative algebras introduced in [8] are special cases of matching BiHom-associative algebras and compatible BiHom-associative algebras.
Definition 3.
A matching BiHom-Lie algebra is a 4-tuple ( g , [ , ] Ω , p , q ) consisting of a k -module g , a family of bilinear operations [ , ] ω : g g g , ω Ω and two linear transformations p , q : g g satisfying the following conditions,
p q = q p , p ( [ a , b ] ω ) = [ p ( a ) , p ( b ) ] ω , q ( [ a , b ] ω ) = [ q ( a ) , q ( b ) ] ω , [ q ( a ) , p ( b ) ] ω = [ q ( b ) , p ( a ) ] ω , [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = 0 ,
for all a , b , c g and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it a regular matching BiHom-Lie algebra.
Proposition 1.
Let ( A , · Ω , p , q ) be a regular matching BiHom-associative algebra. One can define the Lie bracket defined by
[ a , b ] ω : = a · ω b p 1 q ( b ) · ω p q 1 ( a )
for a , b A and ω Ω . Then ( A , [ , ] Ω , p , q ) is a matching BiHom-Lie algebra.
Proof. 
Similar to [8]. □
Lemma 1.
Let ( g , [ , ] Ω , p , q ) be a matching BiHom-Lie algebra. Consider linear combinations
[ , ] A : = α Ω x α [ , ] α , [ , ] B : = β Ω y β [ , ] β ,
where x α , y β k for α , β Ω with finite supports. Then
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] B ] A + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] A ] B + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] A ] B = 0 ,
for a , b , c g .
Proof. 
For a , b , c g , by (8), we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] B ] A = [ q 2 ( a ) , β Ω y β [ q ( b ) , p ( c ) ] β ] A = α Ω x α [ q 2 ( a ) , β Ω y β [ q ( b ) , p ( c ) ] β ] α = α Ω β Ω x α y β [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α .
Similarly, we also have
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] A ] B = α Ω β Ω y β x α [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β [ q 2 ( c ) , [ q ( a ) , p ( b ) ] A ] B = α Ω β Ω y β x α [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β .
Since ( g , [ , ] Ω , p , q ) is a matching BiHom-Lie algebra, then
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = 0 .
Thus
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] B ] A + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] A ] B + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] A ] B = 0
as desired. □
Proposition 2.
Let ( g , [ , ] Ω , p , q ) be a matching BiHom-Lie algebra. Consider linear combinations
[ , ] A : = α Ω x α [ , ] α , x α k ,
with a finite support. Then ( g , [ , ] A , p , q ) is a BiHom-Lie algebra.
Proof. 
It follows from Lemma 1 by taking ( x α ) α Ω = ( y β ) β Ω . □
More generally.
Definition 4.
A compatible BiHom-Lie algebra is a 4-tuple ( g , [ , ] Ω , p , q ) consisting of a k -module g , a family of bilinear operations [ , ] ω : g g g , ω Ω and two linear transformations p , q : g g satisfying the following conditions:
p q = q p , p ( [ a , b ] ω ) = [ p ( a ) , p ( b ) ] ω , q ( [ a , b ] ω ) = [ q ( a ) , q ( b ) ] ω , [ q ( a ) , p ( b ) ] ω = [ q ( b ) , p ( a ) ] ω , [ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β + [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] β ] α + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = 0 ,
for all a , b , c g and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it a regular compatible BiHom-Lie algebra.
Remark 2.
(i)
Matching BiHom-Lie algebras are special cases of compatible BiHom-Lie algebras.
(ii)
Given two BiHom-Lie algebras ( g , [ , ] α , p , q ) and ( g , [ , ] β , p , q ) . Define a new bracket [ , ] : g × g g as follows:
[ a , b ] : = x α [ a , b ] α + y β [ a , b ] β
for some x α , y β k . Easily to check that this new bracket is BiHom-skew symmetry. By a direct calculation, we can check that ( g , [ , ] , p , q ) is a BiHom-Lie algebra. In fact, the BiHom-Jacobi identity
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] ] + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] ] + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] ] = 0
is equivalent to identity (10).
Proposition 3.
Let ( g , · Ω , p , q ) be a matching BiHom-Lie algebra. Then for a , b , c g and α , β Ω , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β = [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α , [ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = 0 .
Proof. 
Since (7) holds for any a , b , c g and α , β Ω , we get
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α + [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α = 0 .
By (7) and (11), we have
[ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β [ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = 0 ,
By the arbitrariness of a , b , c , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β = [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α .
Thus
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = 0 .
Proposition 4.
Let ( A , · Ω , p , q ) be a regular compatible BiHom-associative algebra. Then ( A , [ , ] Ω , p , q ) is a compatible BiHom-Lie algebra, where
[ , ] ω : A × A A , [ a , b ] ω : = a · ω b p 1 q ( b ) · ω p q 1 ( a )
for a , b A and ω Ω .
Proof. 
Obviously, p and q are multiplicative with respect to [ , ] ω . Clearly, [ , ] ω is BiHom-skew symmetry.
Now we prove that (10) holds. For a , b , c A and α , β Ω , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β = [ q 2 ( a ) , q ( b ) · α p ( c ) p 1 q ( p ( c ) ) · α p q 1 ( q ( b ) ) ] β = [ q 2 ( a ) , q ( b ) · α p ( c ) q ( c ) · α p ( b ) ] β = q 2 ( a ) · β ( q ( b ) · α p ( c ) q ( c ) · α p ( b ) ) p 1 q ( q ( b ) · α p ( c ) q ( c ) · α p ( b ) ) · β p q 1 ( q 2 ( a ) ) = q 2 ( a ) · β ( q ( b ) · α p ( c ) ) q 2 ( a ) · β ( q ( c ) · α p ( b ) ) p 1 q ( q ( b ) · α p ( c ) ) · β p q 1 ( q 2 ( a ) ) + p 1 q ( q ( c ) · α p ( b ) ) · β p q 1 ( q 2 ( a ) ) = p ( p 1 q 2 ( a ) ) · β ( q ( b ) · α p ( c ) ) p ( p 1 q 2 ( a ) ) · β ( q ( c ) · α p ( b ) ) ( p 1 q 2 ( b ) · α q ( c ) ) · β q p ( a ) + ( p 1 q 2 ( c ) · α q ( b ) ) · β q p ( a ) .
Similarly, we have
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β = p ( p 1 q 2 ( b ) ) · β ( q ( c ) · α p ( a ) ) p ( p 1 q 2 ( b ) ) · β ( q ( a ) · α p ( c ) ) ( p 1 q 2 ( c ) · α q ( a ) ) · β q p ( b ) + ( p 1 q 2 ( a ) · α q ( c ) ) · β q p ( b ) ,
[ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = p ( p 1 q 2 ( c ) ) · β ( q ( a ) · α p ( b ) ) p ( p 1 q 2 ( c ) ) · β ( q ( b ) · α p ( a ) ) ( p 1 q 2 ( a ) · α q ( b ) ) · β q p ( c ) + ( p 1 q 2 ( b ) · α q ( a ) ) · β q p ( c ) ,
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α = p ( p 1 q 2 ( a ) ) · α ( q ( b ) · β p ( c ) ) p ( p 1 q 2 ( a ) ) · α ( q ( c ) · β p ( b ) ) ( p 1 q 2 ( b ) · β q ( c ) ) · α q p ( a ) + ( p 1 q 2 ( c ) · β q ( b ) ) · α q p ( a ) .
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] β ] α = p ( p 1 q 2 ( b ) ) · α ( q ( c ) · β p ( a ) ) p ( p 1 q 2 ( b ) ) · α ( q ( a ) · β p ( c ) ) ( p 1 q 2 ( c ) · β q ( a ) ) · α q p ( b ) + ( p 1 q 2 ( a ) · β q ( c ) ) · α q p ( b ) ,
[ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = p ( p 1 q 2 ( c ) ) · α ( q ( a ) · β p ( b ) ) p ( p 1 q 2 ( c ) ) · α ( q ( b ) · β p ( a ) ) ( p 1 q 2 ( a ) · β q ( b ) ) · α q p ( c ) + ( p 1 q 2 ( b ) · β q ( a ) ) · α q p ( c ) .
By (6), we get
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β + [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] β ] α + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = 0 .
Hence ( A , [ , ] Ω , p , q ) is a compatible BiHom-Lie algebra. □
Definition 5.
A matching BiHom-pre-Lie algebra is a 4-tuple ( A , Ω , p , q ) consisting of a k -module A, a family of bilinear operations ω : A A A , ω Ω and two linear transformations p , q : A A satisfying the following condition,
p q = q p , p ( a ω b ) = p ( a ) ω p ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) , p q ( a ) α ( p ( b ) β c ) ( q ( a ) α p ( b ) ) β q ( c ) = p q ( b ) β ( p ( a ) α c ) ( q ( b ) β p ( a ) ) α q ( c ) ,
for all a , b , c A and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it regular matching BiHom-pre-Lie algebra.
Remark 3.
Obviously, every compatible BiHom-associative algebra is a matching BiHom-pre-Lie algebra.
In the following, we check that matching BiHom-pre-Lie algebras can induce compatible BiHom-Lie algebras.
Proposition 5.
Let ( A , Ω , p , q ) be a regular matching BiHom-pre-Lie algebra. Then ( A , [ , ] Ω , p , q ) is a compatible BiHom-Lie algebra, where
[ , ] ω : A × A A , [ a , b ] ω : = a ω b p 1 q ( b ) ω p q 1 ( a ) ,
for a , b A and ω Ω .
Proof. 
Obviously, p and q are multiplicative with respect to [ , ] ω . Clearly, [ , ] ω is BiHom-skew symmetry.
Now we prove that (10) holds. For a , b , c A and α , β Ω , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β = [ q 2 ( a ) , q ( b ) α p ( c ) p 1 q ( p ( c ) ) α p q 1 ( q ( b ) ) ] β = [ q 2 ( a ) , q ( b ) α p ( c ) q ( c ) α p ( b ) ] β = q 2 ( a ) β ( q ( b ) α p ( c ) q ( c ) α p ( b ) ) p 1 q ( q ( b ) α p ( c ) q ( c ) α p ( b ) ) β p q 1 ( q 2 ( a ) ) = q 2 ( a ) β ( q ( b ) α p ( c ) ) q 2 ( a ) β ( q ( c ) α p ( b ) ) p 1 q ( q ( b ) α p ( c ) ) β p q 1 ( q 2 ( a ) ) + p 1 q ( q ( c ) α p ( b ) ) β p q 1 ( q 2 ( a ) ) = p q ( p 1 q ( a ) ) β ( p ( p 1 q ( b ) ) α p ( c ) ) p q ( p 1 q ( a ) ) β ( p ( p 1 q ( c ) ) α p ( b ) ) ( q ( p 1 q ( b ) ) α p ( p 1 q ( c ) ) ) β q p ( a ) + ( q ( p 1 q ( c ) ) α p ( p 1 q ( b ) ) ) β q p ( a ) .
Similarly, we have
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β = p q ( p 1 q ( b ) ) β ( p ( p 1 q ( c ) ) α p ( a ) ) p q ( p 1 q ( b ) ) β ( p ( p 1 q ( a ) ) α p ( c ) ) ( q ( p 1 q ( c ) ) α p ( p 1 q ( a ) ) ) β q p ( b ) + ( q ( p 1 q ( a ) ) α p ( p 1 q ( c ) ) ) β q p ( b ) ,
[ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β = p q ( p 1 q ( c ) ) β ( p ( p 1 q ( a ) ) α p ( b ) ) p q ( p 1 q ( c ) ) β ( p ( p 1 q ( b ) ) α p ( a ) ) ( q ( p 1 q ( a ) ) α p ( p 1 q ( b ) ) ) β q p ( c ) + ( q ( p 1 q ( b ) ) α p ( p 1 q ( a ) ) ) β q p ( c ) ,
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α = p q ( p 1 q ( a ) ) α ( p ( p 1 q ( b ) ) β p ( c ) ) p q ( p 1 q ( a ) ) α ( p ( p 1 q ( c ) ) β p ( b ) ) ( q ( p 1 q ( b ) ) β p ( p 1 q ( c ) ) ) α q p ( a ) + ( q ( p 1 q ( c ) ) β p ( p 1 q ( b ) ) ) α q p ( a ) ,
[ q 2 ( b ) , [ q ( c ) , p ( a ) ] β ] α = p q ( p 1 q ( b ) ) α ( p ( p 1 q ( c ) ) β p ( a ) ) p q ( p 1 q ( b ) ) α ( p ( p 1 q ( a ) ) β p ( c ) ) ( q ( p 1 q ( c ) ) β p ( p 1 q ( a ) ) ) α q p ( b ) + ( q ( p 1 q ( a ) ) β p ( p 1 q ( c ) ) ) α q p ( b ) ,
[ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = p q ( p 1 q ( c ) ) α ( p ( p 1 q ( a ) ) β p ( b ) ) p q ( p 1 q ( c ) ) α ( p ( p 1 q ( b ) ) β p ( a ) ) ( q ( p 1 q ( a ) ) β p ( p 1 q ( b ) ) ) α q p ( c ) + ( q ( p 1 q ( b ) ) β p ( p 1 q ( a ) ) ) α q p ( c ) .
By (13), we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] α ] β + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] α ] β + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] α ] β + [ q 2 ( a ) , [ q ( b ) , p ( c ) ] β ] α + [ q 2 ( b ) , [ q ( c ) , p ( a ) ] β ] α + [ q 2 ( c ) , [ q ( a ) , p ( b ) ] β ] α = 0 .
Hence ( A , [ , ] Ω , p , q ) is a compatible BiHom-Lie algebra. □

3. Matching BiHom-Associative Rota-Baxter Algebras

In this section, we introduce the notion of matching BiHom-associative Rota-Baxter algebras and discuss its properties.
Definition 6
([17]). Let λ Ω : = ( λ ω ) ω Ω k be a set of scalars indexed by Ω. A matching associative Rota-Baxter algebra of weight λ Ω is a 3-tuple ( A , · , P Ω ) consisting of an associative algebra ( A , · ) , a family of linear operators P ω : A A , ω Ω satisfying the matching Rota-Baxter identity,
P α ( a ) · P β ( b ) = P α ( a · P β ( b ) ) + P β ( P α ( a ) · b ) + λ β P α ( a · b ) ,
for all a , b A and α , β Ω .
Definition 7.
A matching BiHom-associative Rota-Baxter algebra is a 5-tuple ( A , · , P Ω , p , q ) consisting of a matching Rota-Baxter algebra ( A , · , P Ω ) , a BiHom-associative algebra ( A , · , p , q ) satisfying p P ω = P ω p , q P ω = P ω q . In particular, if p and q are algebra automorphisms, we call it regular matching BiHom-associative Rota-Baxter algebra.
Theorem 1.
Let ( A , · , P Ω ) be a matching associative Rota-Baxter algebra and p , q : A A be two commuting algebra endomorphisms such that p P ω = P ω p and q P ω = P ω q for all ω Ω . Then ( A , · p q = · ( p q ) , P Ω , p , q ) is a matching BiHom-associative Rota-Baxter algebra.
Proof. 
For a , b , c A , we have
p ( a · p q b ) = p ( p ( a ) · q ( b ) ) = p ( p ( a ) ) · q ( p ( b ) ) = p ( a ) · p q q ( b ) .
Similarly, q ( a · p q b ) = q ( a ) · p q q ( b ) .
( a · p q b ) · p q q ( c ) p ( a ) · p q ( b · p q c ) = p ( p ( a ) · q ( b ) ) · q 2 ( c ) p 2 ( a ) · q ( p ( b ) · q ( c ) ) = ( p 2 ( a ) · p q ( b ) ) · q 2 ( c ) p 2 ( a ) · ( p q ( b ) · q 2 ( c ) ) = 0 .
Hence, ( A , · p q , p , q ) is a BiHom-associative algebra. For α , β Ω ,
P α ( a ) · p q P β ( b ) = p ( P α ( a ) ) · q ( P β ( b ) ) = P α ( p ( a ) ) · P β ( q ( b ) ) = P α ( p ( a ) · P β ( q ( b ) ) ) + P β ( P α ( p ( a ) ) · q ( b ) ) + λ β P α ( p ( a ) · q ( b ) ) = P α ( p ( a ) · q ( P β ( b ) ) ) + P β ( p ( P α ( a ) ) · q ( b ) ) + λ β P α ( p ( a ) · q ( b ) ) = P α ( a · p q P β ( b ) ) + P β ( P α ( a ) · p q b ) + λ β P α ( a · p q b ) .
Hence ( A , · p q , P Ω , p , q ) is a matching BiHom-associative Rota-Baxter algebra. □
Conversely, we have.
Proposition 6.
Let ( A , · , P Ω , p , q ) be a regular matching BiHom-assoicative Rota-Baxter algebra. Then ( A , · = · ( p 1 q 1 ) , P Ω ) is a matching associative Rota-Baxter algebra.
Proof. 
For a , b , c A , we have
( a · b ) · c a · ( b · c ) = p 1 ( ( p 1 ( a ) · q 1 ( b ) ) · q 1 ( c ) p 1 ( a ) · q 1 ( p 1 ( b ) · q 1 ( c ) ) = ( p 2 ( a ) · p 1 q 1 ( b ) ) · q ( q 2 ( c ) ) p ( p 2 ( a ) ) · ( p 1 q 1 ( b ) · q 2 ( c ) ) ) = 0 .
Thus the associativity condition holds. For α , β Ω , we have
P α ( a ) · P β ( b ) = p 1 ( P α ( a ) ) · q 1 ( P β ( b ) ) = P α ( p 1 ( a ) ) · P β ( q 1 ( b ) ) = P α ( p 1 ( a ) · P β ( q 1 ( b ) ) ) + P β ( P α ( p 1 ( a ) ) · q 1 ( b ) ) + λ β P α ( p 1 ( a ) · q 1 ( b ) ) = P α ( p 1 ( a ) · q 1 ( P β ( b ) ) ) + P β ( p 1 ( P α ( a ) ) · q 1 ( b ) ) + λ β P α ( p 1 ( a ) · q 1 ( b ) ) = P α ( a · P β ( b ) ) + P β ( P α ( a ) · b ) + λ β P α ( a · b ) .
Hence ( A , · , P Ω ) is a matching associative Rota-Baxter algebra. □
Remark 4.
With the method of Proposition 6, we can give other types of regular BiHom-algebras, which can construct this type of non-Hom-algebras, for example, matching BiHom-pre-Lie Rota-Baxter algebras, matching BiHom-Leibniz Rota-Baxter algebras and so on.
Definition 8.
Let ( A , · , p , q ) be a BiHom-associative algebra and n 0 . The n-th derived BiHom-associative algebra of A is defined by ( A , · n = · ( p n q n ) , p n + 1 , q n + 1 ) .
Theorem 2.
Let ( A , · , P Ω , p , q ) be a matching BiHom-associative Rota-Baxter algebra. Then
( A , · n , P Ω , p n + 1 , q n + 1 )
is also a matching BiHom-associative Rota-Baxter algebra.
Proof. 
Obviously, ( A , · n , p n + 1 , q n + 1 ) is a BiHom-associative algebra. Now we show the matching Rota-Baxter identity holds. For a , b , c A and α , β Ω , we have
P α ( a ) · n P β ( b ) = p n ( P α ( a ) ) · q n ( P β ( b ) ) = P α ( p n ( a ) ) · P β ( q n ( b ) ) = P α ( p n ( a ) · P β ( q n ( b ) ) ) + P β ( P α ( p n ( a ) ) · q n ( b ) ) + λ β P α ( p n ( a ) · q n ( b ) ) = P α ( p n ( a ) · q n ( P β ( b ) ) ) + P β ( p n ( P α ( a ) ) · q n ( b ) ) + λ β P α ( p n ( a ) · q n ( b ) ) = P α ( a · n P β ( b ) ) + P β ( P α ( a ) · n b ) + λ β P α ( a · n b ) .
Hence ( A , · n , P Ω , p n + 1 , q n + 1 ) is a matching BiHom-associative Rota-Baxter algebra. □
Remark 5.
The conclusion of Proposition 6 and Theorem 2 is that existence is not unique. For example. Let ( A , · , P Ω , p , q ) be a matching BiHom-associative Rota-Baxter algebra.
(i)
Set · 1 = · ( p q ) . Then ( A , · 1 ( p 2 q 2 ) , P Ω ) is a matching associative Rota-Baxter algebra.
(ii)
Then ( A , · ( p n + 1 q n + 1 ) , P Ω , p n + 2 , q n + 2 ) is also a matching BiHom-associative Rota-Baxter algebra.

4. Matching BiHom-Zinbiel Algebras and Matching BiHom-(Tri)Dendriform Algebras

In this section, we study the relationship among a kinds of matching BiHom-type algebras, which includes matching BiHom-dendriform algebras, matching BiHom-Zinbiel and matching BiHom-tridendriform algebras. The main results of this section are given as the following categories commutative graph.
Symmetry 13 02345 i003
Definition 9.
A matching BiHom-dendriform algebra is a 5-tuple ( D , Ω , Ω , p , q ) consisting of a k-module D, a family of bilinear operations ω : D D D , { , } , ω Ω and two linear transformations p , q : D D satisfying the following conditions,
p q = q p , p ( a ω b ) = p ( a ) ω p ( b ) , p ( a ω b ) = p ( a ) ω p ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) + p ( a ) β ( b α c ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) ,
p ( a ) α ( b β c ) = ( a β b ) α q ( c ) + ( a α b ) β q ( c ) ,
for all a , b , c D and α , β , ω Ω . In particular, if q ( a ) ω p ( b ) = q ( b ) ω p ( a ) , we call it a commutative matching BiHom-dendriform algebra. If p and q are algebra automorphisms, we call it a regular matching BiHom-dendriform algebra.
Definition 10
([14]). A (left) matching Zinbiel algebra is a pair ( Z , Ω ) consisting of a k-module Z and a family of bilinear operations ( ω ) ω Ω satisfying
( a α b ) β c = a α ( b β c ) + a β ( c α b ) ,
for all a , b , c Z and α , β Ω .
Definition 11.
A matching BiHom-Zinbiel algebra is a 4-tuple ( Z , Ω , p , q ) consisting of a k-module Z, a family of bilinear operations ( ω ) ω Ω and two linear transformations p , q : Z Z satisfying the following conditions,
p q = q p , p ( a ω b ) = p ( a ) ω p ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) , ( a α q ( b ) ) β p q ( c ) = p ( a ) α ( q ( b ) β p ( c ) ) + p ( a ) β ( q ( c ) α p ( b ) ) , ( q ( b ) α p ( a ) ) β p q ( c ) = ( q ( b ) β q ( c ) ) α p 2 ( a ) ,
for a , b , c Z and α , β Ω . In particular, if p and q are bijective, we call it a regular matching BiHom-Zinbiel algebra.
Proposition 7.
Let ( Z , Ω ) be a matching Zinbiel algebra and p , q : Z Z be two commuting algebra endomorphisms. Define a new multiplication on Z by a ω b = p ( a ) ω q ( b ) , for all a , b Z and ω Ω . Then ( Z , Ω , p , q ) is a matching BiHom-Zinbiel algebra.
Proof. 
For a , b , c Z we compute:
( a α q ( b ) ) β p q ( c ) = ( p 2 ( a ) α p q 2 ( b ) ) β p q 2 ( c ) = p 2 ( a ) α ( p q 2 ( b ) β p q 2 ( c ) ) + p 2 ( a ) β ( p q 2 ( c ) α p q 2 ( b ) ) = p 2 ( a ) α q ( p ( q ( b ) ) β q ( p ( c ) ) ) + p 2 ( a ) β q ( p ( q ( c ) ) α q ( p ( b ) ) ) = p 2 ( a ) α q ( q ( b ) β p ( c ) ) + p 2 ( a ) β q ( q ( c ) α p ( b ) ) = p ( a ) α ( q ( b ) β p ( c ) ) + p ( x ) β ( q ( c ) α p ( b ) ) , ( q ( b ) α p ( a ) ) β p q ( c ) = ( p 2 ( q ( b ) ) α p 2 ( q ( a ) ) ) β p ( q 2 ( c ) ) = ( p 2 ( q ( b ) ) β p ( q 2 ( c ) ) ) α p 2 ( q ( a ) ) = p ( p ( q ( b ) ) β q 2 ( c ) ) α q ( p 2 ( a ) ) = ( q ( b ) β q ( c ) ) α p 2 ( a ) ,
finishing the proof. □
As well as we know that a Zinbiel algebra is equivalent to a commutative dendriform algebra. Now we extend this result to the matching BiHom-algebra case.
Proposition 8.
(i)
Let ( D , Ω , Ω , p , q ) be a commutative matching BiHom-dendriform algebra. Define the operation a ω b = a ω b , for all a , b D and ω Ω . Then ( D , Ω , p , q ) is a matching BiHom-Zinbiel algebra.
(ii)
Conversely, let ( D , Ω , p , q ) be a regular matching BiHom-Zinbiel algebra. Define new operations
a ω b : = a ω b a n d a ω b : = q p 1 ( b ) ω p q 1 ( a ) f o r a , b D , ω Ω .
Then ( D , Ω , Ω , p , q ) is a commutative matching BiHom-dendriform algebra.
Proof. 
(i)
For a , b , c D and α , β Ω , we have
( a α q ( b ) ) β p q ( c ) = ( a α q ( b ) ) β p q ( c ) = ( a α q ( b ) ) β q p ( c ) = p ( a ) α ( q ( b ) β p ( c ) ) + p ( a ) β ( q ( b ) α p ( c ) ) = p ( a ) α ( q ( b ) β p ( c ) ) + p ( a ) β ( q ( c ) α p ( b ) ) = p ( a ) α ( q ( b ) β p ( c ) ) + p ( a ) β ( q ( c ) α p ( b ) ) , ( q ( b ) α p ( a ) ) β p q ( c ) = ( q ( b ) α p ( a ) ) β p q ( c ) = ( q ( a ) α p ( b ) ) β p q ( c ) = ( q ( a ) α p ( b ) ) β q p ( c ) = p q ( a ) α ( p ( b ) β p ( c ) ) = q p ( a ) α p ( b β c ) = q ( b β c ) α p ( p ( a ) ) = ( q ( b ) β q ( c ) ) α p 2 ( a ) = ( q ( b ) β q ( c ) ) α p 2 ( a ) .
(ii)
Obviously, D is commutative since q ( a ) ω p ( b ) = q ( p 1 ( p ( b ) ) ) ω p ( q 1 ( q ( a ) ) ) = q ( b ) ω p ( a ) = q ( b ) ω p ( a ) . Clearly, p and q are multiplicative with respect to ω and ω . Now we prove (16), (17) and (18). For a , b , c D and α , β Ω ,
( a α b ) β q ( c ) = ( a α b ) β q ( c ) = ( a α q ( q 1 ( b ) ) ) β p ( q p 1 ( c ) ) = p ( a ) α ( b β c ) + p ( a ) β ( q p 1 ( c ) α p q 1 ( b ) ) = p ( a ) α ( b β c ) + p ( a ) β ( b α c ) .
Also,
( a α b ) β q ( c ) = ( q p 1 ( b ) α p q 1 ( a ) ) β q ( c ) = ( q ( p 1 ( b ) ) α p ( q 1 ( a ) ) ) β p ( q p 1 ( c ) ) = ( q ( p 1 ( b ) ) β q p 1 ( c ) ) α p 2 ( q 1 ( a ) ) = q p 1 ( b β c ) α p 2 q 1 ( a ) = q p 1 ( b β c ) α p q 1 ( p ( a ) ) = p ( a ) α ( b β c ) .
Further,
p ( a ) α ( b β c ) = p ( a ) α ( q p 1 ( c ) β p q 1 ( b ) ) = q p 1 ( q p 1 ( c ) β p q 1 ( b ) ) α p q 1 ( p ( a ) ) = ( q 2 p 2 ( c ) β b ) α p 2 ( q 1 ( a ) ) = ( q 2 p 2 ( c ) β q ( q 1 ( b ) ) α p q ( p q 2 ( a ) ) = q 2 ( p 1 ( c ) ) β ( b α p 2 ( q 2 ( a ) ) ) + q 2 ( p 1 ( c ) ) α ( p ( q 1 ( a ) ) β p ( q 1 ( b ) ) ) = q 2 ( p 1 ( c ) ) β ( q p 1 ( p q 1 ( b ) α p q 1 ( p q 1 ( a ) ) ) + q 2 ( p 1 ( c ) ) α p q 1 ( a β b ) ) = q 2 ( p 1 ( c ) ) β ( p q 1 ( a ) α p q 1 ( b ) ) + q 2 ( p 1 ( c ) ) α p q 1 ( a β b ) ) = q p 1 ( q ( c ) ) β p q 1 ( a α b ) + q p 1 ( q ( c ) ) α p q 1 ( a β b ) ) = ( a α b ) β q ( c ) + ( a β b ) α q ( c ) ,
as required.
Definition 12.
A matching BiHom-tridendriform algebra is a 6-tuple ( D , Ω , Ω , Ω , p , q ) consisting of a k -module D, a family of bilinear operations ω : D D D , { , , } , ω Ω , and two linear transformations p , q : D D satisfying the following conditions,
p q = q p , p ( a ω b ) = p ( a ) ω p ( b ) , p ( a ω b ) = p ( a ) ω p ( b ) , p ( a ω b ) = p ( a ) ω p ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) , q ( a ω b ) = q ( a ) ω q ( b ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) + p ( a ) β ( b α c ) + p ( a ) α ( b β c ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) ,
p ( a ) α ( b β c ) = ( a β b ) α q ( c ) + ( a α b ) β q ( c ) + ( a β b ) α q ( c ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) ,
( a α b ) β q ( c ) = p ( a ) β ( b α c ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) ,
( a α b ) β q ( c ) = p ( a ) α ( b β c ) ,
for all a , b , c D and α , β , ω Ω .
Definition 13.
(i)
Let ( D , Ω , Ω , p , q ) and ( D , Ω , Ω , p , q ) be two matching BiHom-dendriform algebras. A linear map f : D D is called a matching BiHom-dendriform algebra morphism if for all ω Ω ,
ω ( f f ) = f ω , ω ( f f ) = f ω
and
p f = f p , q f = f q .
(ii)
Let ( D , Ω , Ω , Ω , p , q ) and ( D , Ω , Ω , Ω , p , q ) be two matching BiHom-teidendriform algebras. A linear map f : D D is called a matching BiHom-terdendriform algebra morphism if for all ω Ω ,
ω ( f f ) = f ω , ω ( f f ) = f ω , ω ( f f ) = f ω
and
p f = f p , q f = f q .
Theorem 3.
(i)
Let ( D , Ω , Ω ) be a matching dendriform algebra and let p , q : D D be matching dendriform algebra endomorphisms such that p q = q p . Then D p q = ( D , p q , Ω , p q , Ω , p , q ) is a matching BiHom-dendriform algebra, where p q , ω : = ω ( p q ) , and p q , ω : = ω ( p q ) .
Moreover, suppose that ( D , Ω , Ω ) is another matching dendriform algebra and let p , q : D D be matching dendriform algebra endomorphisms such that p q = q p . If f : D D is a matching dendriform algebra morphism that satisfies f p = p f , f q = q f , then
f : ( D , p q , Ω , p q , Ω , p , q ) ( D , p q , Ω , p q , Ω , p , q )
is a morphism of matching BiHom-dendriform algebras.
(ii)
Let ( D , Ω , Ω , Ω ) be a matching tridendriform algebra and let p , q : D D be matching tridendriform algebra endomorphisms such that p q = q p . Then D p q = ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) , where p q , ω : = ω ( p q ) , p q , ω : = ω ( p q ) and p q , ω : = ω ( p q ) for each ω Ω , is a matching BiHom-tridendriform algebra.
Moreover, suppose that ( D , Ω , Ω , Ω ) is another matching tridendriform algebra and let p , q : D D be matching tridendriform algebra endomorphisms such that p q = q p . If f : D D is a matching tridendriform algebra morphism that satisfies f p = p f , f q = q f , then
f : ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) ( D , p q , Ω , p q , Ω , p q , Ω , p , q )
is a morphism of matching BiHom-tridendriform algebras.
Proof. 
We just prove Item (ii) and Item (i) can be proved similarly. Clearly, p and q are multiplicative with respect to p q , ω , p q , ω and p q , ω . For any a , b , c D and α , β Ω , we have
( a p q , α b ) p q , β q ( c ) = p ( p ( a ) α q ( b ) ) β q ( q ( c ) ) = ( p 2 ( a ) α p q ( b ) ) β q 2 ( c ) , p ( a ) p q , α ( b p q , β c ) = p ( p ( a ) ) α q ( p ( b ) β q ( c ) ) = p 2 ( a ) α ( q p ( b ) β q 2 ( c ) ) , p ( a ) p q , β ( b p q , α c ) = p ( p ( a ) ) β q ( p ( b ) α q ( c ) ) = p 2 ( a ) β ( q p ( b ) α q 2 ( c ) ) , p ( a ) p q , α ( b p q , β c ) = p ( p ( a ) ) α q ( p ( b ) β q ( c ) ) = p 2 ( a ) α ( q p ( b ) β q 2 ( c ) ) .
Thereby
( a p q , α b ) p q , β q ( c ) = p ( a ) p q , α ( b p q , β c ) + p ( a ) p q , β ( b p q , α c ) + p ( a ) p q , α ( b p q , β c ) ,
that is, (19) holds for ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) . Similarly, (20)–(25) hold. Thus ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) is a matching BiHom-tridendriform algebra. And
f ( a ) p q , α f ( b ) = p ( f ( a ) ) α q ( f ( b ) ) = f ( p ( a ) ) α f ( q ( b ) ) = f ( p ( a ) α q ( b ) ) = f ( a p q , α b ) , f ( a ) p q , α f ( b ) = p ( f ( a ) ) α q ( f ( b ) ) = f ( p ( a ) ) α f ( q ( b ) ) = f ( p ( a ) α q ( b ) ) = f ( a p q , α b ) ,
f ( a ) p q , α f ( b ) = p ( f ( a ) ) α q ( f ( b ) ) = f ( p ( a ) ) α f ( q ( b ) ) = f ( p ( a ) α q ( b ) ) = f ( a p q , α b ) .
Thus f : ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) ( D , p q , Ω , p q , Ω , p q , Ω , p , q ) is a morphism of matching BiHom-tridendriform algebras. □
Proposition 9.
Let I be an non-empty set. For each i I , let A i : Ω k be a map with finite supports, identified with finite set A i = ( x i , ω ) ω Ω , x i , ω k .
(i)
Let ( D , Ω , Ω , p , q ) be a matching BiHom-dendriform algebra. Define the following bilinear operations:
i : = ω Ω x i , ω ω , w h e r e { , } a n d i I .
Then ( D , I , I , p , q ) is also a matching BiHom-dendriform algebra.
(ii)
Let ( D , Ω , ω , Ω , p , q ) be a matching BiHom-tridendriform algebra. Define the following bilinear operations:
i : = ω Ω x i , ω ω , w h e r e { , , } a n d i I .
Then ( D , I , I , I , p , q ) is also a matching BiHom-tridendriform algebra.
Proof. 
We just prove Item (ii) and Item (i) can be proved similarly. Clearly, p and q are multiplicative with respect to i , i and i . For any a , b , c D , i , j I and α , β Ω , we have
( a i b ) j q ( c ) = β Ω y j , β ( α Ω x i , α a α b ) β q ( c ) = α Ω β Ω x i , α y j , β ( ( a α b ) β q ( c ) ) = α Ω β Ω x i , α y j , β ( p ( a ) α ( b β c ) + p ( a ) β ( b α c ) + p ( a ) α ( b β c ) ) = α Ω x i , α p ( a ) α ( β Ω y j , β b β c ) + β Ω y j , β p ( a ) β ( α Ω x i , α b α c ) + α Ω x i , α p ( a ) α ( β Ω y j , β b β c ) ) = α Ω x i , α p ( a ) α ( b j c ) + β Ω y j , β p ( a ) β ( b i c ) + α Ω x i , α p ( a ) α ( b j c ) ) = p ( a ) i ( b j c ) + p ( a ) j ( b i c ) + p ( a ) i ( b j c ) ) .
Hence, (19) holds. Similarly, (20)–(25) hold. Hence ( D , I , I , I , p , q ) is a matching BiHom-tridendriform algebra. □
Theorem 4.
(i)
Let ( A , Ω , Ω , p , q ) be a matching BiHom-dendriform algebra. Then ( A , · Ω , p , q ) is a compatible BiHom-associative algebra, where
· ω : A A A , a · ω b : = a ω b + a ω b f o r a , b A a n d ω Ω .
(ii)
Let ( A , Ω , Ω , Ω , p , q ) be a matching BiHom-tridendriform algebra. Then ( A , · Ω , p , q ) is a compatible BiHom-associative algebra, where
· ω : A A A , a · ω b : = a ω b + a ω b + a ω b f o r a , b A a n d ω Ω .
Proof. 
We only prove Item (ii) and Item (i) can be proved similarly. Clearly, p and q are multiplicative with respect to · ω . For a , b , c A and α , β Ω , we have
( a · α b ) · β q ( c ) + ( a · β b ) · α q ( c ) = ( a α b + a α b + a α b ) · β q ( c ) + ( a β b + a β b + a β b ) · α q ( c ) = ( a α b + a α b + a α b ) β q ( c ) + ( a α b + a α b + a α b ) β q ( c ) + ( a α b + a α b + a α b ) β q ( c ) + ( a β b + a β b + a β b ) α q ( c ) + ( a β b + a β b + a β b ) α q ( c ) + ( a β b + a β b + a β b ) α q ( c ) = ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a α b ) β q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) + ( a β b ) α q ( c ) ,
and
p ( a ) · α ( b · β c ) + p ( a ) · β ( b · α c ) = p ( a ) · α ( b β c + b β c + b β c ) + p ( a ) · β ( b α c + b α c + b α c ) = p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) α ( b β c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) + p ( a ) β ( b α c ) .
By (19)–(25), we get
( a · α b ) · β q ( c ) + ( a · β b ) · α q ( c ) = p ( a ) · α ( b · β c ) + p ( a ) · β ( b · α c ) .
Hence ( A , · Ω , p , q ) is a compatible BiHom-associative algebra. □
Theorem 5.
Let ( A , Ω , Ω , p , q ) be a regular matching BiHom-dendriform algebra. Then ( A , Ω , p , q ) is a matching BiHom-pre-Lie algebra, where
ω : A A A , a ω b : = a ω b ( p 1 q ( b ) ) ω ( p q 1 ( a ) ) f o r a , b A a n d ω Ω .
Proof. 
Obvious, p and q are multiplicative with respect to ω . For a , b , c A and α , β Ω , we have
p q ( a ) α ( p ( b ) β c ) ( q ( a ) α p ( b ) ) β q ( c ) = p q ( a ) α ( p ( b ) β c p 1 q ( c ) β p ( b ) ) ( q ( a ) α p ( b ) q ( b ) α p ( a ) ) β q ( c ) = p q ( a ) α ( p ( b ) β c p 1 q ( c ) β p ( b ) ) p 1 q ( p ( b ) β c p 1 q ( c ) β p ( b ) ) α p q 1 ( p q ( a ) ) ( q ( a ) α p ( b ) q ( b ) α p ( a ) ) β q ( c ) + p 1 q ( q ( c ) ) β p q 1 ( q ( a ) α p ( b ) q ( b ) α p ( a ) ) = p q ( a ) α ( p ( b ) β c ) p q ( a ) α ( p 1 q ( c ) β p ( b ) ) ( q ( b ) β p 1 q ( c ) ) α p 2 ( a ) + ( p 2 q 2 ( c ) β q ( b ) ) α p 2 ( a ) ( q ( a ) α p ( b ) ) β q ( c ) + ( q ( b ) α p ( a ) ) β q ( c ) + p 1 q 2 ( c ) β ( p ( a ) α p 2 q 1 ( b ) ) p 1 q 2 ( c ) β ( p ( b ) α p 2 q 1 ( a ) )
and
p q ( b ) β ( p ( a ) α c ) ( q ( b ) β p ( a ) ) α q ( c ) = p q ( b ) β ( p ( a ) α c p 1 q ( c ) α p q 1 ( p ( a ) ) ) ( q ( b ) β p ( a ) p 1 q ( p ( a ) ) β p q 1 ( q ( b ) ) ) α q ( c ) = p q ( b ) β ( p ( a ) α c p 1 q ( c ) α p 2 q 1 ( a ) ) ( q ( b ) β p ( a ) q ( a ) β p ( b ) ) α q ( c ) = p q ( b ) β ( p ( a ) α c p 1 q ( c ) α p 2 q 1 ( a ) ) p 1 q ( p ( a ) α c p 1 q ( c ) α p 2 q 1 ( a ) ) β p q ( b ) ( q ( b ) β p ( a ) q ( a ) β p ( b ) ) α q ( c ) + p 1 q ( q ( c ) ) α p q 1 ( q ( b ) β p ( a ) q ( a ) β p ( b ) ) = p q ( b ) β ( p ( a ) α c ) p q ( b ) β ( p 1 q ( c ) α p 2 q 1 ( a ) ) ( q ( a ) α p 1 q ( c ) ) β p q ( b ) + ( p 2 q 2 ( c ) α p ( a ) ) β p q ( b ) ( q ( b ) β p ( a ) ) α q ( c ) + ( q ( a ) β p ( b ) ) α q ( c ) + p 1 q 2 ( c ) α ( p ( b ) β p 2 q 1 ( a ) ) p 1 q 2 ( c ) α ( p ( a ) β p 2 q 1 ( b ) ) .
By (16)–(18), we get
p q ( a ) α ( p ( b ) β c ) ( q ( a ) α p ( b ) ) β q ( c ) = p q ( b ) β ( p ( a ) α c ) ( q ( b ) β p ( a ) ) α q ( c ) .
Hence ( A , Ω , p , q ) is a matching BiHom-pre-Lie algebra. □
Proposition 10.
(i)
Let ( A , · , P Ω , p , q ) be a matching BiHom-associative Rota-Baxter algebra of weight 0. Define the operations ω and ω for ω Ω by
a ω b : = a · P ω ( b ) a n d a ω b : = P ω ( a ) · b , f o r a , b A .
Then ( D , Ω , Ω , p , q ) is a matching BiHom-dendriform algebra.
(ii)
Let ( A , · , P Ω , p , q ) be a matching BiHom-associative Rota-Baxter algebra. Define the operations ω and ω for ω Ω by
a ω b : = a · P ω ( b ) + λ ω a · b a n d a ω b : = P ω ( a ) · b , f o r a , b A .
Then ( A , Ω , Ω , p , q ) is a matching BiHom-dendriform algebra.
Proof. 
Since Item (i) can be seen as a special case of Item (ii) by taking λ Ω = { 0 } , we only prove Item (ii). Clearly, p and q are multiplicative with respect to ω and ω . For a , b , c A and α , β Ω , we have
p ( a ) α ( b β c ) + p ( a ) β ( b α c ) = p ( a ) α ( b · P β ( c ) + λ β b · c ) + p ( a ) β ( P α ( b ) · c ) = p ( a ) · P α ( b · P β ( c ) + λ β b · c ) + λ α p ( a ) · ( b · P β ( c ) + λ β b · c ) + p ( a ) · P β ( P α ( b ) · c ) + λ β p ( a ) · ( P α ( b ) · c ) = p ( a ) · P α ( b · P β ( c ) ) + p ( a ) · P α ( λ β b · c ) + λ α p ( a ) · ( b · P β ( c ) ) + λ α p ( a ) · ( λ β b · c ) + p ( a ) · P β ( P α ( b ) · c ) + λ β p ( a ) · ( P α ( b ) · c ) = p ( a ) · ( P α ( b ) · P β ( c ) ) + λ α p ( a ) · ( b · P β ( c ) ) + λ α λ β p ( a ) · ( b · c ) + λ β p ( a ) · ( P α ( b ) · c ) = ( a · P α ( b ) ) · P β ( q ( c ) ) + λ α ( a · b ) · P β ( q ( c ) ) + λ α λ β ( a · b ) · q ( c ) + λ β ( a · P α ( b ) ) · q ( c ) = ( a · P α ( b ) + λ α a · b ) · P β ( q ( c ) ) + λ β ( a · P α ( b ) + λ α a · b ) · q ( c ) = ( a · P α ( b ) + λ α a · b ) β q ( c ) = ( a α b ) β q ( c ) .
Also,
( a α b ) β q ( c ) = ( P α ( a ) · b ) β q ( c ) = ( P α ( a ) · b ) · P β ( q ( c ) ) + λ β ( ( P α ( a ) · b ) ) · q ( c ) = P α ( p ( a ) ) · ( b · P β ( c ) ) + λ β P α ( p ( a ) ) · ( b · c ) = P α ( p ( a ) ) · ( b · P β ( c ) + λ β b · c ) = P α ( p ( a ) ) · ( b β c ) = p ( a ) α ( b β c ) ,
and
( a β b ) α q ( c ) + ( a α b ) β q ( c ) = ( a · P β ( b ) + λ β a · b ) α q ( c ) + ( P α ( a ) · b ) β q ( c ) = P α ( a · P β ( b ) + λ β a · b ) · q ( c ) + P β ( P α ( a ) · b ) · q ( c ) = ( P α ( a · P β ( b ) ) + P β ( P α ( a ) · b ) + λ β P α ( a · b ) ) · q ( c ) = ( P α ( a ) · P β ( b ) ) · q ( c ) = P α ( p ( a ) ) · ( P β ( b ) · c ) = p ( a ) α ( b β c ) .
Hence ( A , Ω , Ω , p , q ) is a matching BiHom-dendriform algebra. □
Proposition 11.
Let ( A , · , P Ω , p , q ) be a matching BiHom-associative Rota-Baxter algebra. Define the operations ω , Ω and ω for ω Ω by
a ω b : = a · P ω ( b ) , a ω b : = λ ω a · b a n d a ω b : = P ω ( a ) · b , f o r a , b A .
Then ( A , Ω , Ω , Ω , p , q ) is a matching BiHom-tridendriform algebra.
Proof. 
Clearly, p and q are multiplicative with respect to ω , ω and ω . For a , b , c A and α , β Ω , we have
( a α b ) β q ( c ) = ( a · P α ( b ) ) · P β ( q ( c ) ) = p ( a ) · ( P α ( b ) · P β ( c ) ) = p ( a ) · ( P α ( b · P β ( c ) ) + P β ( P α ( b ) · c ) + λ β P α ( b · c ) ) = p ( a ) α ( b β c ) ) + p ( a ) β ( b α c ) + a α ( b β c ) ) , ( a α b ) β q ( c ) = ( P α ( a ) · b ) · P β ( q ( c ) ) = P α ( p ( a ) ) · ( b · P β ( c ) ) = p ( a ) α ( b β c ) , p ( a ) α ( b β c ) = P α ( p ( a ) ) · ( P β ( b ) · c ) = ( P α ( a ) · P β ( b ) ) · q ( c ) = ( P α ( a · P β ( b ) ) + P β ( P β ( a ) · b ) + λ β P α ( a · b ) ) · q ( c ) = ( a β b ) α q ( c ) + ( a α b ) β q ( c ) + ( a β b ) α q ( c ) , ( a α b ) β q ( c ) = λ β ( P α ( a ) · b ) · q ( c ) = λ β P α ( p ( a ) ) · ( b · c ) = p ( a ) α ( b β c ) , ( a α b ) β q ( c ) = λ β ( a · P α ( b ) ) · q ( c ) = λ β p ( a ) · ( P α ( b ) · c ) = p ( a ) β ( b α c ) , ( a α b ) β q ( c ) = λ α ( a · b ) · P β ( q ( c ) ) = λ α p ( a ) · ( b · P β ( c ) ) = p ( a ) α ( b β c ) , ( a α b ) β q ( c ) = λ α λ β ( a · b ) · q ( c ) = λ α λ β p ( a ) · ( b · c ) = p ( a ) α ( b β c )
as required. □
Proposition 12.
(i)
Let ( A , · , P Ω , p , q ) be a regular matching BiHom-associative Rota-Baxter algebra of weight 0. Then ( A , Ω , p , q ) is a matching BiHom-pre-Lie algebra, where
a ω b : = P ω ( a ) · b p 1 q ( b ) · q 1 p ( P ω ( a ) ) f o r a , b A a n d ω Ω .
(ii)
Let ( A , · , P Ω , p , q ) be a regular matching BiHom-associative Rota-Baxter algebra. Then ( A , Ω , p , q ) is a matching BiHom-pre-Lie algebra, where
a ω b : = P ω ( a ) · b p 1 q ( b ) · q 1 p ( P ω ( a ) ) λ ω p 1 q ( b ) · q 1 p ( a ) f o r a , b A a n d ω Ω .
Proof. 
(i)
It follows from Theorem 5 and Proposition 10 (i).
(ii)
It follows from Theorem 5 and Proposition 10 (ii).
Example 1.
We consider the following 2-dimensional regular matching BiHom-associative Rota-Baxter algebra of weight 0 ( A , · , P Ω , p , q ) , Ω = { 1 , 2 } , where bilinear operation ·, p , q and P 1 , P 2 , are defined, with respect to a basis { x , y } ([8,10]), by
x · x = x , x · y = b x + ( 1 a ) y , y · x = b ( 1 a ) a x + a y , y · y = b a y , p ( x ) = x , p ( y ) = b ( 1 a ) a x + a y , q ( x ) = x , q ( y ) = b x + ( 1 a ) y , P 1 ( x ) = 0 , P 1 ( y ) = r x , P 2 ( x ) = s x + t y , P 2 ( y ) = s 2 t x s y .
where a , b , r , s , t are parameters in k with a 0 , 1 , t 0 . By Proposition 12, we have
x 1 x = 0 , x 1 y = 0 , y 1 x = 0 , y 1 y = 0 , x 2 x = 0 , x 2 y = 0 , y 2 x = 0 , y 2 y = 0 .
Obviously, the Ω operations obtained above satisfies the Definition of matching BiHom-pre-Lie algebra.

5. Matching BiHom-Lie Rota-Baxter Algebra

In this section, as a generalization of [9,17,20,22], we introduce the notion of matching BiHom-Lie Rota-Baxter algebras and discuss its properties. The main results of this section are given as the following categories commutative graph.
Symmetry 13 02345 i004
Definition 14.
Let λ Ω : = ( λ ω ) ω Ω be a family indexed by Ω. A matching BiHom-Lie Rota-Baxter algebra is a 5-tuple ( g , [ , ] , P Ω , p , q ) consisting of a BiHom-Lie algebra ( g , [ , ] , p , q ) , a family P Ω : = ( P ω ) ω Ω of linear operators P ω : A A , ω Ω satisfying the following conditions:
p q = q p ,
p P ω = P ω p , q P ω = P ω q ,
[ P α ( a ) , P β ( b ) ] = P α ( [ a , P β ( b ) ] ) + P β ( [ P α ( a ) , b ] ) + λ β P α ( [ a , b ] ) ,
for all a , b g and α , β , ω Ω . In particular, if p and q are algebra automorphisms, we call it a regular matching BiHom-Lie Rota-Baxter algebra.
Theorem 6.
Let ( g , [ , ] , P Ω ) be a matching Lie Rota-Baxter algebra and p , q : g g be two commuting Lie algebra endomorphism such that p P ω = P ω p , q P ω = P ω q for each ω Ω . Then ( g , [ , ] p q , P Ω , p , q ) is a matching BiHom-Lie Rota-Baxter algebra, where [ , ] p q : = [ , ] ( p q ) .
Proof. 
Clearly, p and q are multiplicative with respect to [ , ] p q . In addition, for a , b , c g , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] p q ] p q = [ q 2 ( a ) , [ p q ( b ) , q p ( c ) ] ] p q = [ p q 2 ( a ) , q [ p q ( b ) , q ( p ( c ) ) ] ] = p q 2 [ a , [ b , c ] ] .
By the Jacobi identity and skew symmetry of ( g , [ , ] ) , the BiHom-Jacobi identity and BiHom-skew symmetry of ( g , [ , ] p q , p , q ) holds. Hence ( g , [ , ] p q , p , q ) is a BiHom-Lie algebra.
For a , b g and α , β Ω , we have
[ P α ( a ) , P β ( b ) ] p q = [ P α ( p ( a ) ) , P β ( q ( b ) ) ] = P α ( [ p ( a ) , P β ( q ( b ) ) ] ) + P β ( [ P α ( p ( a ) ) , q ( b ) ] ) + λ β P α ( [ p ( a ) , q ( b ) ] ) = P α ( [ p ( a ) , q ( P β ( b ) ) ] ) + P β ( [ p ( P α ( a ) ) , q ( b ) ] ) + λ β P α ( [ p ( a ) , q ( b ) ] ) = P α ( [ a , P β ( b ) ] p q ) + P β ( [ P α ( a ) , b ] p q ) + λ β P α ( [ a , b ] p q ) ,
as required. □
Theorem 7.
Let ( g , [ , ] , P Ω , p , q ) be a regular matching BiHom-Lie Rota-Baxter algebra. Then ( g , [ , ] p 1 q 1 , P Ω ) is a matching Lie Rota-Baxter algebra, where [ , ] p 1 q 1 : = [ , ] ( p 1 q 1 ) .
Proof. 
Clearly, p and q are multiplicative with respect to [ , ] p 1 q 1 . In addition, for a , b , c g , we have
[ a , [ b , c ] ] p 1 q 1 ] p 1 q 1 = [ a , [ p 1 ( b ) , q 1 ( c ) ] ] p 1 q 1 = [ p 1 ( a ) , q 1 [ p 1 ( b ) ) , q 1 ( c ) ] ] = p 1 q 2 [ q 2 ( a ) , [ q ( b ) , p ( c ) ] .
By the BiHom-Jacobi identity and BiHom-skew symmetry of ( g , [ , ] , p , q ) , the Jacobi identity and skew symmetry of ( g , [ , ] p 1 q 1 ) holds. Hence ( g , [ , ] p 1 q 1 ) is a Lie algebra.
For a , b g and α , β Ω , we have
[ P α ( a ) , P β ( b ) ] p 1 q 1 = [ P α ( p 1 ( a ) ) , P β ( q 1 ( b ) ) ] = P α ( [ p 1 ( a ) , P β ( q 1 ( b ) ) ] ) + P β ( [ P α ( p 1 ( a ) ) , q 1 ( b ) ] ) + λ β P α ( [ p 1 ( a ) , q 1 ( b ) ] ) = P α ( [ p 1 ( a ) , q 1 ( P β ( b ) ) ] ) + P β ( [ p 1 ( P α ( a ) ) , q 1 ( b ) ] ) + λ β P α ( [ p 1 ( a ) , q 1 ( b ) ] ) = P α ( [ a , P β ( b ) ] p 1 q 1 ) + P β ( [ P α ( a ) , b ] p 1 q 1 ) + λ β P α ( [ a , b ] p 1 q 1 ) ,
as required. □
Definition 15.
Let ( g , [ , ] , p , q ) be a BiHom-Lie algebra and n 0 . The n-th derived BiHom-algebra of g is defined by
g ( n ) = ( g , [ , ] ( n ) = [ , ] ( p n q n ) , p n + 1 , q n + 1 ) .
Theorem 8.
Let ( g , [ , ] , P Ω , p , q ) be a matching BiHom-Lie Rota-Baxter algebra. Then its n-th derived BiHom-algebra is a matching BiHom-Lie Rota-Baxter algebra.
Proof. 
Clearly, p and q are multiplicative with respect to [ , ] ( n ) . In addition, for a , b , c g , we have
[ q 2 ( a ) , [ q ( b ) , p ( c ) ] ( n ) ] ( n ) = [ q 2 ( a ) , [ p n q ( b ) , q n p ( c ) ] ] ( n ) = [ p n q 2 ( a ) , q n [ p n q ( b ) , q n p ( c ) ] ] = [ q 2 ( p n ( a ) ) , [ q ( q n p n ( b ) ) , p ( q 2 n ( c ) ) ] ] .
Hence ( g , [ , ] ( n ) , p n + 1 , q n + 1 ) is a BiHom-Lie algebra. For a , b g and α , β Ω , we have
[ P α ( a ) , P β ( b ) ] ( n ) = [ P α ( p n ( a ) ) , P β ( q n ( b ) ) ] = P α ( [ p n ( a ) , P β ( q n ( b ) ) ] ) + P β ( [ P α ( p n ( a ) ) , q n ( b ) ] ) + λ β P α ( [ p n ( a ) , q n ( b ) ] ) = P α ( [ p n ( a ) , q n ( P β ( b ) ) ] ) + P β ( [ p n ( P α ( a ) ) , q n ( b ) ] ) + λ β P α ( [ p n ( a ) , q n ( b ) ] ) = P α ( [ a , P β ( b ) ] ( n ) ) + P β ( [ P α ( a ) , b ] ( n ) ) + λ β P α ( [ a , b ] ( n ) ) ,
as required. □
Proposition 13.
Let ( A , · , P Ω , p , q ) be a regular matching BiHom-associative Rota-Baxter algebra. Then ( A , [ , ] , P Ω , p , q ) is a matching BiHom-Lie Rota-Baxter algebra, where
[ a , b ] = a · b p 1 q ( b ) · p q 1 ( a ) f o r a , b A .
Proof. 
Following [8], ( A , [ , ] , p , q ) is a BiHom-Lie algebra. For all a , b A , α , β Ω , by (28), we have
[ P α ( a ) , P β ( b ) ] = P α ( a ) · P β ( b ) p 1 q ( P β ( b ) ) · p q 1 ( P α ( a ) ) = P α ( a ) · P β ( b ) P β ( p 1 q ( b ) ) · P α ( p q 1 ( a ) ) , [ a , P β ( b ) ] = a · P β ( b ) p 1 q ( P β ( b ) ) · p q 1 ( a ) = a · P β ( b ) P β ( p 1 q ( b ) ) · p q 1 ( a ) , [ P α ( a ) , b ] = P α ( a ) · b p 1 q ( b ) · p q 1 ( P α ( a ) ) = P α ( a ) · b p 1 q ( b ) · P α ( p q 1 ( a ) ) .
By the matching Rota-Baxter identity (15), there are the following identity,
[ P α ( a ) , P β ( b ) ] = P α ( [ a , P β ( b ) ] ) + P β ( [ P α ( a ) , b ] ) + λ β P α ( [ a , b ] ) .
Hence ( A , [ , ] , P Ω , p , q ) is a matching BiHom-Lie Rota-Baxter algebra. □
Proposition 14.
Let ( g , [ , ] , P Ω , p , q ) be a regular matching BiHom-Lie Rota-Baxter algebra of weight zero. Then ( g , Ω , p , q ) is a matching BiHom-pre-Lie algebra, where
a ω b = [ P ω ( a ) , b ] f o r a , b g a n d ω Ω .
Proof. 
Clearly, p and q are multiplicative with respect to ω . In addition, for a , b , c g and α , β Ω , we have
p q ( a ) α ( p ( b ) β c ) ( q ( a ) α p ( b ) ) β q ( c ) = [ P α ( p q ( a ) ) , [ P β ( p ( b ) ) , c ] ] [ P β ( [ P α ( q ( a ) ) , p ( b ) ] ) , q ( c ) ] = [ P α ( p q ( a ) ) , [ P β ( p ( b ) ) , c ] ] [ [ P α ( q ( a ) ) , P β ( p ( b ) ) ] , q ( c ) ] + [ P α ( [ q ( a ) , P β ( p ( b ) ) ] ) , q ( c ) ] = [ P α ( p q ( a ) ) , [ p ( P β ( b ) ) , c ] ] [ q [ P α ( a ) , q 1 p ( P β ( b ) ) ] , p ( p 1 q ( c ) ] + [ P α ( [ q ( a ) , p ( P β ( b ) ) ] ) , q ( c ) ] = [ P α ( p q ( a ) ) ) , [ p ( P β ( b ) ) , c ] ] + [ q ( p 1 q ( c ) ) , p [ P α ( a ) , q 1 p ( P β ( b ) ) ] ] [ P α ( [ q ( P β ( b ) ) , p ( a ) ] ) , q ( c ) ] , = [ q 2 ( P α ( q 1 p ( a ) ) ) , [ q ( P β ( q 1 p ( b ) ) , p ( p 1 ( c ) ) ] ] + [ q 2 ( p 1 ( c ) ) , [ q ( P α ( q 1 p ( a ) ) ) , p ( P β ( q 1 p ( b ) ) ) ] ] [ P α ( [ q ( P β ( b ) ) , p ( a ) ] ) , q ( c ) ] ,
and
p q ( b ) β ( p ( a ) α c ) ( q ( b ) β p ( a ) ) α q ( c ) = [ P β ( p q ( b ) ) , [ P α ( p ( a ) ) , c ] ] [ P α ( [ P β ( q ( b ) ) , p ( a ) ] ) , q ( c ) ] = [ q 2 ( P β ( q 1 p ( b ) ) ) , [ q ( P α ( q 1 p ( a ) ) ) , p ( p 1 ( c ) ) ] ] [ P α ( [ q ( P β ( b ) ) , p ( a ) ] ) , q ( c ) ] = [ q 2 ( P β ( q 1 p ( b ) ) ) , [ q ( p 1 ( c ) ) , p ( P α ( q 1 p ( a ) ) ) ] ] [ P α ( [ q ( P β ( b ) ) , p ( a ) ] ) , q ( c ) ] .
By the BiHom-Jacobi identity (3), it is not hard to check that
p q ( a ) α ( p ( b ) β c ) ( q ( a ) α p ( b ) ) β q ( c ) = p q ( b ) β ( p ( a ) α c ) ( q ( b ) β p ( a ) ) α q ( c ) .
Hence ( g , Ω , p , q ) is a matching BiHom-pre-Lie algebra. □

6. Conclusions

In this paper, we introduce the notions of matching BiHom-type algebras. Their construction methods are studied in detail. Further, we study the properties and relationships between categories of these matching BiHom-type algebraic structures. Here, in the future, we intend to try to further study the cohomology and deformation of these matching BiHom-type algebras.

Author Contributions

W.T.: writing—original draft preparation, T.Y.: supervision. All authors have read and agreed to the published version of the manuscript.

Funding

The authors were supported by the National Natural Science Foundation of China (No. 11761017), the Guizhou province first-class construction discipline program funded project (C420001), the National Natural Science Foundation of China (No. 11461014), the Doctoral Starting Up Foundation of Guizhou Normal University (No.GZNUD[2019]13) and the Guizhou Provincial Science and Technology Foundation (No. [2020]1Y005).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referees for their valuable suggestions and improve the quality of this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 314–361. [Google Scholar] [CrossRef] [Green Version]
  2. Benayadi, S.; Makhlouf, A. Hom-Lie algebras with symmetric invariant nondegenerate bilinear form. J. Geom. Phys. 2014, 76, 38–60. [Google Scholar] [CrossRef]
  3. Chen, Y.; Wang, Z.; Zhang, L. Quasitriangular Hom-Lie bialgebras. J. Lie Theory 2012, 22, 1075–1089. [Google Scholar]
  4. Chen, Y.; Zheng, H.; Zhang, L. Double Hom-Associative Algebra and Double Hom-Lie Bialgebra. Adv. Appl. Clifford Algebra 2020, 30, 1–25. [Google Scholar] [CrossRef]
  5. Ma, T.; Zeng, H. (m, n)-Hom-Lie algebras. Publ. Math. Debrecen. 2018, 92, 59–78. [Google Scholar] [CrossRef]
  6. Sheng, Y. Representations of Hom-Lie algebras. Algebr. Represent. Theory 2012, 15, 1081–1098. [Google Scholar] [CrossRef] [Green Version]
  7. Sun, B.; Ma, Y.; Chen, L. Biderivations and commuting linear maps on Hom-Lie algebras. arXiv 2020, arXiv:2005.11117. [Google Scholar]
  8. Graziani, G.; Makhlouf, A.; Menini, C.; Panaite, F. BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras. Symmetry Integr. Geom. Methods Appl. 2015, 11, 086. [Google Scholar] [CrossRef] [Green Version]
  9. Liu, L.; Makhlouf, A.; Menini, C.; Panaite, F. BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota-Baxter operators on BiHom-Lie algebras. Georgian Math. J. 2021, 28, 581–594. [Google Scholar] [CrossRef]
  10. Liu, L.; Makhlouf, A.; Menini, C.; Panaite, F. Rota-Baxter operators on BiHom-associative algebras and related structures. Colloq. Math. 2020, 161, 263–294. [Google Scholar] [CrossRef]
  11. Baxter, G. An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 1960, 10, 731–742. [Google Scholar] [CrossRef]
  12. Rota, G.C. Baxter algebras and combinatorial identities, I, II. Bull. Am. Math. Soc. 1969, 75, 325–334. [Google Scholar] [CrossRef] [Green Version]
  13. Ebrahimi-Fard, K. Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys. 2002, 61, 130–147. [Google Scholar] [CrossRef] [Green Version]
  14. Gao, X.; Guo, L.; Zhang, Y. Commutative matching Rota-Baxter operators, shuffle products with decorations and matching Zinbiel algebras. J. Algebra 2021, 586, 402–432. [Google Scholar] [CrossRef]
  15. Makhlouf, A. Hom-Dendriform Algebras and Rota-Baxter Hom-Algebras. Operads Univers. Algebra 2012, 147–171. [Google Scholar]
  16. Guo, L. An Introduction to Rota-Baxter Algebra; Surveys of Modern Mathematics, 4; International Press: Somerville, MA, USA; Higher Education Press: Beijing, China, 2012. [Google Scholar]
  17. Zhang, Y.; Gao, X.; Guo, L. Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras. J. Algebra 2020, 552, 134–170. [Google Scholar] [CrossRef] [Green Version]
  18. Foissy, L. Algebraic structures on typed decorated rooted trees. arXiv 2018, arXiv:1811.07572. [Google Scholar] [CrossRef]
  19. Bruned, Y.; Hairer, M.; Zambotti, L. Algebraic renormalisation of regularity structures. Invent. Math. 2019, 215, 1039–1156. [Google Scholar] [CrossRef] [Green Version]
  20. Belavin, A.; Drinfeld, V. Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. 1982, 16, 159–180. [Google Scholar] [CrossRef]
  21. Chen, D.; Peng, X.; Zargeh, C.; Zhang, Y. Matching Hom-setting of rota-Baxter algebras, dendriform algebras, and pre-Lie algebras. Adv. Math. Phys. 2020, 2020, 9792726. [Google Scholar] [CrossRef]
  22. Semenov-Tian-Shansky, M.A. What is a classical r-matrix? Funct. Anal. Appl. 1983, 17, 259–272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Teng, W.; You, T. Matching BiHom-Rota-Baxter Algebras and Related Structures. Symmetry 2021, 13, 2345. https://doi.org/10.3390/sym13122345

AMA Style

Teng W, You T. Matching BiHom-Rota-Baxter Algebras and Related Structures. Symmetry. 2021; 13(12):2345. https://doi.org/10.3390/sym13122345

Chicago/Turabian Style

Teng, Wen, and Taijie You. 2021. "Matching BiHom-Rota-Baxter Algebras and Related Structures" Symmetry 13, no. 12: 2345. https://doi.org/10.3390/sym13122345

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop