Next Article in Journal
Application of Vieta–Lucas Series to Solve a Class of Multi-Pantograph Delay Differential Equations with Singularity
Next Article in Special Issue
Some Explicit Expressions for Twisted Catalan-Daehee Numbers
Previous Article in Journal
Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation?
Previous Article in Special Issue
Maximal Type Elements for Families
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Note on the Summation of the Incomplete Gamma Function

Department of Mathematics and Statistics, York University, Toronto, ON M3J1P3, Canada
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(12), 2369; https://doi.org/10.3390/sym13122369
Submission received: 8 November 2021 / Revised: 25 November 2021 / Accepted: 27 November 2021 / Published: 9 December 2021
(This article belongs to the Special Issue Recent Advances in Special Functions and Their Applications)

Abstract

:
We examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions have an asymmetrical zero distribution.
MSC:
Primary 30E20; 33-01; 33-03; 33-04; 33-33B; 33E20; 33E33C

1. Significance Statement

In 1887, Mathias Lerch [1] published the Hurwitz-Lerch zeta function. Series representations of Hurwitz-Lerch zeta function were researched in [1,2,3]. Our purpose in this paper is to add to the existing literature on special functions [4,5,6,7], in particular the Hurwitz-Lerch zeta function series representations, by offering a formal derivation of the Hurwitz-Lerch zeta function defined in terms of the infinite sum of the incomplete gamma function. We believe that researchers will find this new formula valuable in their present and future research activities. All the results in this work are new.

2. Introduction

In this present work, we derive a new expression for the Hurwitz-Lerch zeta function in terms of the infinite sum of the incomplete gamma function given by:
n = 0 1 2 ( 1 ) n ( k ( i log ( a ) ) k log k ( a ) a m 2 i n i ( i m 2 n 1 ) k 1 Γ ( k , ( m 2 i n i ) log ( a ) ) + e i π k 2 k a m + 2 i n + i ( i m 2 n 1 ) k 1 Γ ( k , ( m + 2 i n + i ) log ( a ) ) 1 ( 2 n + 1 ) 2 ( i log ( a ) ) k log k 1 ( a ) ( i m 2 n 1 ) k 1 ( log ( a ) ( m 2 i n i ) ) k m 2 log ( a ) + k ( m + 2 i n + i ) + 1 ( 2 n + 1 ) 2 e i π k 2 ( i m 2 n 1 ) k ( log ( a ) ( m + 2 i n + i ) ) k 1 i m 2 log ( a ) + i k m + 2 k n + k ) = 1 4 π log k ( a ) 2 π k e π m 2 Φ e m π , k , log ( a ) π + 1 2
where the variables k , a , m are general complex numbers. The derivations follow the method used by us in [8]. This method involves using a form of the generalized Cauchy’s integral formula given by:
y k Γ ( k + 1 ) = 1 2 π i C e w y w k + 1 d w ,
where y , w C , and C is in general an open contour in the complex plane where the bilinear concomitant [8] has the same value at the end points of the contour.

The Incomplete Gamma Function

The multivalued incomplete gamma functions [9], γ ( s , z ) and Γ ( s , z ) , are defined by:
γ ( s , z ) = 0 z t s 1 e t d t ,
and:
Γ ( s , z ) = z t s 1 e t d t ,
where R e ( s ) > 0 . The incomplete gamma function has a recurrence relation given by:
γ ( s , z ) + Γ ( s , z ) = Γ ( s ) ,
where a 0 , 1 , 2 , . . . The incomplete gamma function is continued analytically by:
γ ( a , z e 2 m π i ) = e 2 π m i a γ ( a , z ) ,
and:
Γ ( s , z e 2 m π i ) = e 2 π m i s Γ ( s , z ) + ( 1 e 2 π m i s ) Γ ( s ) ,
where m Z . When z 0 , Γ ( s , z ) is an entire function of s and γ ( s , z ) is meromorphic with simple poles at s = n for n = 0 , 1 , 2 , . . . with residue ( 1 ) n n ! . These definitions are listed in Section 8.2 (i) and (ii) in [9].

3. The Hurwitz-Lerch Zeta Function

We use Equation (1.11.3) in [10], where Φ ( z , s , v ) is the Hurwitz-Lerch zeta function, which is a generalization of the Hurwitz zeta ζ ( s , v ) and polylogarithm functions L i n ( z ) . The Hurwitz-Lerch zeta function has a series representation given by:
Φ ( z , s , v ) = n = 0 ( v + n ) s z n
where | z | < 1 , v 0 , 1 , 2 , 3 , . . . , and is continued analytically by its integral representation given by:
Φ ( z , s , v ) = 1 Γ ( s ) 0 t s 1 e v t 1 z e t d t = 1 Γ ( s ) 0 t s 1 e ( v 1 ) t e t z d t
where R e ( v ) > 0 and either | z | 1 , z 1 , R e ( s ) > 0 or z = 1 , R e ( s ) > 1 .

4. Hurwitz-Lerch Zeta Function in Terms of the Contour Integral

We use the method in [8]. The cut and contour are in the first quadrant of the complex w-plane with 0 < R e ( w + m ) < 1 . Using a generalization of Cauchy’s integral formula, we first replace y log ( a ) + 1 2 π ( 2 y + 1 ) , then multiply both sides by 1 2 π ( 1 ) y e 1 2 π m ( 2 y + 1 ) and take the infinite sum over y [ 0 , ) to obtain:
π k + 1 e π m 2 Φ e m π , k , log ( a ) π + 1 2 2 k ! = 1 2 π i y = 0 C 1 2 π ( 1 ) y a w w k 1 e 1 2 π ( 2 y + 1 ) ( m + w ) d w = 1 2 π i C y = 0 1 2 π ( 1 ) y a w w k 1 e 1 2 π ( 2 y + 1 ) ( m + w ) d w = 1 2 π i C 1 4 π a w w k 1 sec h 1 2 π ( m + w ) d w
from Equation (1.232.2) in [11], where I m ( w + m ) > 0 , in order for the sum to converge.

Additional Contour Integral

Using Equation (2), we replace y log ( a ) and multiply both sides by π 4 to obtain:
π log k ( a ) 4 k ! = 1 2 π i C 1 4 π a w w k 1 d w

5. Incomplete Gamma Function in Terms of the Contour Integral

Using Equation (2), we replace y i y + log ( a ) , multiply both sides by e y ( i m + 2 n + 1 ) , and take the definite integral over y [ 0 , ) to obtain:
( i m 2 n 1 ) k 1 e 1 2 i ( π k + log ( a ) ( 2 i m + 4 n + 2 ) ) Γ ( k + 1 , ( m i ( 2 n + 1 ) ) log ( a ) ) Γ ( k + 1 ) = 1 2 π i C i a w w k 1 m 2 i n + w i d w
from Equation (8.350.2) in [11]. Again using Equation (2), we replace y i y + log ( a ) , multiply both sides by e y ( i m + 2 n + 1 ) , and take the definite integral over y [ 0 , ) to obtain:
( i log ( a ) ) k log k ( a ) a m 2 i n i ( i m 2 n 1 ) k 1 Γ ( k + 1 , ( m + 2 i n + i ) log ( a ) ) Γ ( k + 1 ) = 1 2 π i C i a w w k 1 m + 2 i n + w + i d w
from Equation (8.350.2) in [11]. Next, we add Equations (7) and (8) to obtain:
( 1 ) n 1 2 k ! ( ( i log ( a ) ) k log k ( a ) a m 2 i n i ( i m 2 n 1 ) k 1 Γ ( k + 1 , ( m 2 i n i ) log ( a ) ) + ( i m 2 n 1 ) k 1 e 1 2 i ( π k + log ( a ) ( 2 i m + 4 n + 2 ) ) Γ ( k + 1 , ( m + 2 i n + i ) log ( a ) ) ) = 1 2 π i C ( 1 ) n ( 2 n + 1 ) a w w k 1 ( m + w ) 2 + ( 2 n + 1 ) 2 d w
Finally, we form three equations by multiplying Equation (9) by m 2 ( 2 n + 1 ) 2 , 1 ( 2 n + 1 ) 2 , and 2 m ( 2 n + 1 ) 2 add take the infinite sum over n [ 0 , ) and simplify to obtain:
n = 0 1 2 ( 2 n + 1 ) 2 ( 1 ) n a m 2 i n i ( m 2 k ! ( e i π k 2 a 4 i n + 2 i ( i m 2 n 1 ) k 1 Γ ( k + 1 , ( m + 2 i n + i ) log ( a ) ) + ( i log ( a ) ) k log k ( a ) ( i m 2 n 1 ) k 1 Γ ( k + 1 , ( m 2 i n i ) log ( a ) ) ) + 2 m Γ ( k ) e 1 2 i π ( k 1 ) ( a 4 i n + 2 i ( i m 2 n 1 ) k Γ ( k , ( m + 2 i n + i ) log ( a ) ) i ( i log ( a ) ) k log k ( a ) ( i m 2 n 1 ) k Γ ( k , ( m 2 i n i ) log ( a ) ) ) + e i π k 2 a 4 i n + 2 i Γ ( k 1 ) ( i m 2 n 1 ) 1 k Γ ( k 1 , ( m + 2 i n + i ) log ( a ) ) + ( i log ( a ) ) k log k ( a ) ( i m 2 n 1 ) 1 k Γ ( k 1 , ( m 2 i n i ) log ( a ) ) ) = 1 2 π i n = 0 C ( 1 ) n a w w k 1 ( m + w ) 2 ( 2 n + 1 ) ( m + w ) 2 + ( 2 n + 1 ) 2 d w = 1 2 π i C n = 0 ( 1 ) n a w w k 1 ( m + w ) 2 ( 2 n + 1 ) ( m + w ) 2 + ( 2 n + 1 ) 2 d w = 1 2 π i C a m + w ( m + w ) k 1 π 4 1 4 π sec h 1 2 π ( 2 m + w ) d w
from Equation (5.1.26.11) in [12] where R e ( w + m ) > 0 .
Theorem 1.
For all k , a , m C ,
n = 0 1 2 ( 1 ) n ( k ( i log ( a ) ) k log k ( a ) a m 2 i n i ( i m 2 n 1 ) k 1 Γ ( k , ( m 2 i n i ) log ( a ) ) + e i π k 2 k a m + 2 i n + i ( i m 2 n 1 ) k 1 Γ ( k , ( m + 2 i n + i ) log ( a ) ) 1 ( 2 n + 1 ) 2 ( i log ( a ) ) k log k 1 ( a ) ( i m 2 n 1 ) k 1 ( log ( a ) ( m 2 i n i ) ) k m 2 log ( a ) + k ( m + 2 i n + i ) + 1 ( 2 n + 1 ) 2 e i π k 2 ( i m 2 n 1 ) k ( log ( a ) ( m + 2 i n + i ) ) k 1 i m 2 log ( a ) + i k m + 2 k n + k ) = 1 4 π log k ( a ) 2 π k e π m 2 Φ e m π , k , log ( a ) π + 1 2
Proof. 
Observe that the sum of the right-hand side of Equations (5) and (6) is equal to the right-hand side of (10), so we can equate the left-hand sides to yield the stated result. □

6. Special Cases

In the proceeding section, we evaluate Equation (11) and simplify using the following functions and fundamental constants: Catalan’s constant C, Glaisher’s constant A, Apréy’s constant ζ ( 3 ) , exponential integral function E n ( z ) , Riemann zeta function ζ ( s ) , polylogarithm function L i n ( z ) , Hurwitz zeta function ζ ( s , a ) , digamma function ψ ( z ) , and hypergeometric function 2 F 1 a , b ; c ; z .
Example 1.
The degenerate case.
n = 0 m 2 ( 1 ) n ( 2 n + 1 ) m 2 + ( 2 n + 1 ) 2 = 1 4 π π sec h π m 2
Proof. 
Use Equation (11), and set k = 0 and simplify using entry (2) in [13]. □
Lemma 1.
For all k , m C ,
n = 0 1 2 ( 1 ) n ( 1 ( 2 n + 1 ) 2 i e 1 2 i π k π k 1 ( ( 2 i m 4 n 2 ) k ( m 2 i n i ) k 1 ( π m 2 + 2 k ( m + 2 i n + i ) ) e i π k ( 2 i m 4 n 2 ) k ( m + 2 i n + i ) k 1 ( π m 2 + 2 k ( m 2 i n i ) ) ) + k e 1 2 i π ( k + i m + 2 n + 1 ) ( i m 2 n 1 ) k 1 Γ ( k , 1 2 ( m i ( 2 n + 1 ) ) π ) + k e 1 2 i π ( k i m + 2 n + 1 ) ( i m 2 n 1 ) k 1 Γ ( k , 1 2 ( m + 2 i n + i ) π ) ) = 1 4 π ( 2 π k e π m 2 Li k ( e m π ) + ( π 2 ) k )
Proof. 
Use Equation (11), and set a = e π / 2 and simplify using Equation (64:12:1) in [13]. □
Lemma 2.
For all k C ,
n = 0 1 2 π ( 2 n + 1 ) 2 k ( 1 ) n e 1 2 i π ( k + 2 n + 1 ) ( 4 n 2 ) k ( 2 π k e i π n ( ( i ( 2 n + 1 ) ) k e i π k ( i ( 2 n + 1 ) ) k ) π 2 k ( 2 n + 1 ) ( Γ ( k , 1 2 i ( 2 π n + π ) ) e i π ( k + 2 n ) Γ ( k , 1 2 i ( 2 π n + π ) ) ) ) = 1 4 π k + 1 ( ( 2 k + 2 2 ) ζ ( k ) + 2 k )
Proof. 
Use Equation (13), and set m = 0 and simplify using entry (4) in the table below (25:12:5) in [13]. □
Lemma 3.
For all k , a C ,
n = 0 1 2 ( 1 ) n ( k a 2 i n i ( 2 n 1 ) k 1 ( i log ( a ) ) k log k ( a ) Γ ( k , ( 2 i n i ) log ( a ) ) + e i π k 2 k a 2 i n + i ( 2 n 1 ) k 1 Γ ( k , ( 2 i n + i ) log ( a ) ) k ( 2 i n + i ) ( 2 n 1 ) k 1 ( i log ( a ) ) k log k 1 ( a ) ( ( 2 i n i ) log ( a ) ) k ( 2 n + 1 ) 2 + e i π k 2 ( 2 k n + k ) ( 2 n 1 ) k ( ( 2 i n + i ) log ( a ) ) k 1 ( 2 n + 1 ) 2 ) = 1 4 π ( log k ( a ) 2 π k ( 2 k ζ ( k , 1 2 ( log ( a ) π + 1 2 ) ) 2 k ζ ( k , 1 2 ( log ( a ) π + 3 2 ) ) ) )
Proof. 
Use Equation (11), and set m = 0 and simplify using entry (4) in the table below (64:12:7) in [13]. □
Example 2.
An example in terms of Catalan’s constant C,
n = 0 ( 1 ) n ( 2 n + 1 ) ( Γ ( 2 , i ( 2 n + 1 ) π ) + Γ ( 2 , i ( 2 n + 1 ) π ) ) = 8 C 7 4 π
Proof. 
Use Equation (11), take the first partial derivative with respect to k, and set m = 0 , k = 2 , a = e π and simplify using Equation (7) in [14]. □
Example 3.
An example in terms of Glaisher’s constant A,
n = 0 Γ 0 , 1 2 i ( 2 π n + π ) + Γ 0 , 1 2 i ( 2 π n + π ) ( 2 n + 1 ) 2 = π 2 log A 3 2 7 / 12 e 4
Proof. 
Use Equation (11), take the first partial derivative with respect to k, and set m = 0 , k = 2 , a = e π / 2 and simplify using Equation (8) in [14]. □
Example 4.
An example in terms of Apery’s constant ζ ( 3 ) ,
n = 0 i E 1 1 2 i ( 2 π n + π ) E 1 1 2 i ( 2 π n + π ) ( 2 n + 1 ) 3 = 3 π 3 32 7 π ζ ( 3 ) 8
Proof. 
Use Equation (11), take the first partial derivative with respect to k, and set m = 0 , k = 2 , a = e π / 2 and simplify using Equation (9) in [14]. □
Example 5.
An example in terms of Catalan’s constant C,
n = 0 ( 1 ) n + 1 4 e i π n ( 16 i e 2 i π n E 3 ( 1 4 i ( 4 n + 3 ) π ) π 2 ( 4 n + 3 ) i ( 4 n + 1 ) Γ ( 2 , 1 4 i ( 4 n + 1 ) π ) + ( 4 n + 3 ) Γ ( 2 , 1 4 i ( 4 n + 3 ) π ) ( 4 n + 1 ) Γ ( 2 , 1 4 i ( 4 π n + π ) ) ) = i ( π 2 48 C ) 24 2 π
n = 0 ( 1 ) n + 1 4 e i π n ( 16 i e 2 i π n E 3 ( 1 4 i ( 4 n + 3 ) π ) π 2 ( 4 n + 3 ) i ( 4 n + 1 ) Γ ( 2 , 1 4 i ( 4 n + 1 ) π ) + ( 4 n + 3 ) Γ ( 2 , 1 4 i ( 4 n + 3 ) π ) ( 4 n + 1 ) Γ ( 2 , 1 4 i ( 4 π n + π ) ) ) = i ( π 2 48 C ) 24 2 π
Proof. 
Use Equation (13), and set k = 2 , m = i / 2 and simplify using Equation (2.2.1.2.7) in [15] and Equation (8.19.1) in [9]. □
Example 6.
An example in terms of the fundamental constant log ( 2 ) ,
n = 0 Γ 1 , 1 2 i ( 2 π n + π ) + Γ 1 , 1 2 i ( 2 π n + π ) = log ( 2 ) 1
Proof. 
Use Equation (14), and apply l’Hopital’s rule as k 1 and simplify. □
Example 7.
An example in terms of π,
n = 0 i ( 2 n + 1 ) Γ 2 , 1 2 i ( 2 π n + π ) Γ 2 , 1 2 i ( 2 π n + π ) = 1 π π 24
Proof. 
Use Equation (14), and set k = 2 and simplify. □
Example 8.
An example in terms of Apery’s constant ζ ( 3 ) ,
n = 0 ( 2 n + 1 ) 2 Γ 3 , 1 2 i ( 2 π n + π ) + e 2 i π n Γ 3 , 1 2 i ( 2 π n + π ) = 16 3 ζ ( 3 ) 12 π 2
Proof. 
Use Equation (14), and set k = 3 and simplify. □
Example 9.
An example in terms of 1 / π ,
n = 0 2 i ( 2 n + 1 ) 3 Γ 4 , 1 2 i ( 2 π n + π ) Γ 4 , 1 2 i ( 2 π n + π ) = 7 π 1440 4 π 3
Proof. 
Use Equation (14), and set k = 4 and simplify. □
Example 10.
An example in terms of π,
n = 0 ( 2 n + 1 ) 4 Γ 5 , 1 2 i ( 2 π n + π ) + Γ 5 , 1 2 i ( 2 π n + π ) = 15 ζ ( 5 ) 256 80 π 4
Proof. 
Use Equation (14), and set k = 5 and simplify. □
Example 11.
An example in terms of π,
n = 0 i Γ 6 , 1 2 i ( 2 π n + π ) Γ 6 , 1 2 i ( 2 π n + π ) ( 2 n + 1 ) 7 = π 7 768
Proof. 
Use Equation (14), and set k = 6 and simplify. □
Example 12.
An example in terms of the Polylogarithm function L i k ( x ) ,
n = 0 1 2 ( 1 ) n ( e i π 4 2 π ( n + i π 18 + ( 1 2 i 6 ) ) 2 n ( 1 i 3 ) 2 i n + ( 1 3 + i ) ( 2 n + 1 ) 2 + ( 1 ) 3 / 4 2 π ( 1 3 i ) 2 i n ( π 18 + 1 2 ( 2 i n ( 1 3 i ) ) ) ( 2 n ( 1 + i 3 ) ) 3 / 2 ( 2 n + 1 ) 2 ( 1 ) 3 / 4 e 1 2 π ( ( 1 3 i ) 2 i n ) Γ ( 1 2 , 1 2 ( ( 1 3 i ) 2 i n ) π ) 2 ( 2 n ( 1 + i 3 ) ) 3 / 2 + e 1 2 π ( 2 i n + ( 1 3 + i ) ) + i π 4 Γ ( 1 2 , 1 2 ( 2 i n + ( 1 3 + i ) ) π ) 2 ( 2 n ( 1 i 3 ) ) 3 / 2 ) = 1 4 π ( 2 e π / 6 π Li 1 2 ( e π / 3 ) + π 2 )
Proof. 
Use Equation (11), and set k = 1 / 2 , a = e π / 2 , m = 1 / 3 and simplify using Equation (25.14.2) in [9]. □
Example 13.
An example in terms of the Hurwitz-Lerch zeta function Φ ( s , u , v ) ,
n = 0 ( 1 ) n ( 1 4 ( 1 2 ( ( 1 2 i ) 2 i n ) 2 i π ) π 3 / 2 2 n ( 2 + i ) ( 1 2 i ) 2 i n ( 2 n + 1 ) 2 + e i π 4 2 n + i ( n + 2 π + i 2 ) π 3 / 2 ( 1 + 2 i n ) 3 / 2 ( 2 n + 1 ) 2 1 4 e π ( ( 1 2 i ) 2 i n ) Γ ( 1 2 , ( ( 1 2 i ) 2 i n ) π ) 2 2 n ( 2 + i ) e π ( 1 + 2 i n ) i π 4 Γ ( 1 2 , ( 2 i n + 1 ) π ) 2 2 n + i ) = 1 2 π ( 1 π 2 i e π / 2 Φ ( e π , 1 2 , 3 2 ) π )
Proof. 
Use Equation (11), and set k = 1 / 2 , a = e π , m = 1 + i and simplify. □
Example 14.
An example in terms of the hyperbolic functions.
n = 0 e i π n ( Γ ( 1 , ( ( 1 i ) 2 i n ) π ) Γ ( 1 , 2 i π n + ( 1 + i ) π ) ) = 1 2 i e π 4 e π / 2 + 4 e π cot 1 e π / 2 + sec h π 2
Proof. 
Use Equation (11), and set k = 1 , a = e π , m = 1 and simplify using entry (3) in the table below (64:12:7) in [13]. □
Example 15.
An example in terms of the exponential function,
n = 0 1 64 n ( n + 1 ) + 32 ( 1 + ( 1 + i ) n ) E 2 ( 1 2 ( ( 1 i ) 2 i n ) π ) e 2 i π n ( ( 1 + i ) n + i ) E 2 ( i π n + ( 1 2 + i 2 ) π ) = ( 1 96 i 96 ) ( e π ( 5 + 7 e π ( e π 5 ) ) 1 ) π ( 1 + e π ) 4
Proof. 
Use Equation (11), and set k = 3 , a = e π / 2 , m = 1 and simplify using entry (4) in the table below (64:12:7) in [13] and Equation (8.19.1) in [9]. □
Example 16.
An example in terms of the Polylogarithm function L i k ( x ) ,
n = 0 1 2 ( 1 ) n + 3 4 ( 4 4 n + 2 i π 2 ( n + i π 1 2 ) ( 2 n + 1 ) 2 ( 1 + i π ( 2 n + 1 ) ) 3 / 2 + 2 2 ( 2 π n + π + 2 i ) π 3 / 2 ( 2 n + 1 ) 2 π ( 2 n + 1 ) i 1 i π ( 2 n + 1 ) + i e 1 2 + i π n Γ ( 1 2 , 1 2 i ( 2 π n + π i ) ) 2 n + i π 1 + π e 1 2 i π n Γ ( 1 2 , 1 2 i ( 2 π n + π + i ) ) π ( 2 n + 1 ) i ) = e π Li 1 2 ( 1 e ) + π 2
Proof. 
Use Equation (11), and set k = 1 / 2 , a = e π / 2 , m = 1 / π and simplify using Equation (64:12:2) in [13]. □
Example 17.
An example in terms of the trigamma function ψ ( 1 ) ( x ) ,
n = 0 e π ( 1 + ( 2 + i ) n ) ( 2 n + 1 ) Γ ( 2 , ( 2 n 1 ) π ) + e 4 π n + 2 π Γ ( 2 , 2 π n + π ) = 2 + ψ ( 1 ) 1 4 + i 2 ψ ( 1 ) 3 4 + i 2 8 π
Proof. 
Use Equation (15), and set k = 2 , a = 1 and simplify using Equation (64:4:1) in [13]. □
Example 18.
An example in terms of π,
n = 0 ( 1 ) n e 2 i π n Γ ( 1 , i ( 2 n + 1 ) π ) e 4 i π n Γ ( 1 , i ( 2 n + 1 ) π ) = 1 2 i ( π 3 )
Proof. 
Use Equation (15), and apply l’Hopital’s rule as k 1 and simplify using Equation (64:9:2) in [13], then set a = e π and simplify. □
Example 19.
An example in terms of log ( x ) and π,
n = 0 E 1 1 6 ( 6 i n ( 1 + 3 i ) ) π + E 1 1 6 ( 6 i n ( 1 3 i ) ) π = log 1 + e π / 3
Proof. 
Use Equation (11), and set a = e π / 2 , k = 1 , m = 1 / 3 and simplify using entry (3) in the table below (64:12:7) in [13] and Equation (8.19.1) in [9]. □
Example 20.
An example in terms of the Hurwitz-Lerch zeta function Φ ( s , u , v ) ,
n = 0 ( 1 ) n ( 1 9 ( 2 n + 1 ) 2 e π / 2 π 1 + i ( 2 n ( 1 + i 3 ) ) 1 i ( ( 1 3 i ) 2 i n ) i ( 18 n + π ( 9 + 3 i ) ) + i e π / 2 π 1 + i ( 2 n ( 1 i 3 ) ) i ( 2 i n + ( 1 3 + i ) ) 1 + i ( 18 n + π + ( 9 3 i ) ) 9 ( 2 n + 1 ) 2 i e π ( 5 6 2 i n ) ( 2 n ( 1 + i 3 ) ) 1 i Γ ( i , ( ( 1 3 i ) 2 i n ) π ) + i e 1 6 i π ( 12 n + ( 6 + i ) ) ( 2 n ( 1 i 3 ) ) 1 i Γ ( i , ( 2 i n + ( 1 3 + i ) ) π ) ) = 1 2 π 1 + i ( 1 2 e π / 6 Φ ( e π / 3 , i , 3 2 ) )
Proof. 
Use Equation (11), and set a = e π , k = i , m = 1 / 3 and simplify. □
Example 21.
An example in terms of the Polylogarithm function L i k ( x ) ,
n = 0 ( 1 ) n ( 1 12 ( 2 n + 1 ) 2 i e π / 2 π i ( ( 12 n ( 4 3 i ) ) 1 i ( 6 i n + ( 3 2 + 2 i ) ) i ( ( 144 + 144 i ) n + ( 12 + 5 i ) π + ( 84 + 12 i ) ) + e π ( 12 n ( 8 + 3 i ) ) 1 i ( ( 3 2 4 i ) 6 i n ) i ( ( 12 + 5 i ) π ( 12 + 12 i ) ( 12 n + ( 8 + 3 i ) ) ) ) + ( 1 i ) e 1 12 i π ( 12 n + ( 8 + 9 i ) ) ( 2 n ( 4 3 + i 2 ) ) 2 i Γ ( 1 + i , 1 12 i ( 12 n + ( 8 + 3 i ) ) π ) ( 1 i ) e 1 12 i π ( 12 n + ( 4 + 3 i ) ) ( 2 n ( 2 3 i 2 ) ) 2 i Γ ( 1 + i , i π n + ( 1 4 + i 3 ) π ) ) = 1 4 π 2 + i ( 2 i 4 ( 1 ) 5 6 i 4 Li 1 i ( ( 1 ) 1 3 + i 2 ) )
Proof. 
Use Equation (11), and set a = e π / 2 , k = 1 + i , m = 1 / 2 + i / 3 and simplify using Equation (25.14.3) in [9]. □
Example 22.
An example in terms of the Hurwitz-Lerch zeta function Φ ( s , u , v ) ,
n = 0 ( 1 ) n 2 π 2 ( 4 n + 1 ) ( 32 + 64 e 1 8 i π ( 4 n + 3 ) ( 8 n 2 + 6 n + 1 ) E 3 ( 1 8 i ( 4 n + 3 ) π ) ( 2 n + 1 ) ( 4 n + 3 ) + 64 e 1 8 i π ( 4 n + 1 ) E 3 ( 1 8 i ( 4 n + 1 ) π ) ) = 8 + ( 1 ) 3 / 4 Φ ( i , 2 , 3 4 ) 2 π
Proof. 
Use Equation (11), and set a = e π / 4 , k = 2 , m = i / 2 and simplify using Equation (8.19.1) in [9]. □
Example 23.
An example in terms of the Hypergeometric function,
n = 0 4 π ( 4 n + 1 ) ( 4 n + 3 ) ( 1 ) n e 1 8 i π ( 4 n + 1 ) ( ( 4 n + 3 ) E 2 ( 1 8 i ( 4 n + 1 ) π ) + i e i π n ( 4 n + 1 ) E 2 ( 1 8 i ( 4 n + 3 ) π ) ) = 1 3 2 ( 3 ( 1 i ) 2 F 1 ( 3 4 , 1 ; 7 4 ; i ) )
Proof. 
Use Equation (11), and set a = e π / 4 , k = 1 , m = i / 2 and simplify using Equation (9.559) in [11] and Equation (8.19.1) in [9]. □
Example 24.
An example in terms of the log-gamma function log ( Γ ( x ) ) ,
n = 0 ( 1 ) n e 1 3 i π ( 2 n + 1 ) Γ 0 , 1 3 i ( 2 n + 1 ) π + e 1 3 π ( 4 i n + 2 i ) Γ 0 , 1 3 i ( 2 n + 1 ) π 2 ( 2 n + 1 ) = 1 2 π log 6 Γ 1 12 7 Γ 7 12
Proof. 
Use Equation (15), take the first partial derivative with respect to k, and set k = 0 , a = e π / 3 and simplify using Equation (25.11.18) in [9]. □

7. Discussion

The authors constructed an expression for the Hurwitz-Lerch zeta function Φ ( k , a , m ) in terms of the infinite sum of the incomplete gamma function Γ ( k , { a , m } ) , where the parameter constraints are wide. The derivations used fundamental constants and special functions, and the infinite sum allowed for a wide range of the parameters. We checked the outcome numerically using Wolfram Mathematica.

Author Contributions

Conceptualization, R.R.; funding acquisition, A.S.; supervision, A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by NSERC Canada under grant 504070.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lerch, M. Note sur la fonction ( w , x , s ) = k = 0 e 2 k π x i ( w + k ) s . Acta Math. 1887, 11, 19–24. (In French) [Google Scholar] [CrossRef]
  2. Katsurada, M. Power series and asymptotic series associated with the Lerch zeta-function. Proc. Jpn. Acad. Ser. A Math. Sci. 1998, 74, 167–170. [Google Scholar] [CrossRef]
  3. Garunks̆tis, R.; Laurinc̆ikas, A. The lerch zeta-function. Integral Transform. Spec. Funct. 2000, 10, 1–189. [Google Scholar] [CrossRef]
  4. Kamlesh, J.; Dutt, P.S.; Sooppy, N.K.; Serkan, A. Generating functions involving the incomplete H-functions. Analysis 2021, 41, 239–244. [Google Scholar] [CrossRef]
  5. Purohit, S.D.; Khan, A.M.; Suthar, D.L.; Dave, S. The Impact On Raise of Environmental Pollution and Occurrence In Biological Populations Pertaining to Incomplete H-function. Natl. Acad. Sci. Lett. 2021, 44, 263–266. [Google Scholar] [CrossRef]
  6. El-Deeb, S.M.; Bulboacă, T. Fekete-Szegõ inequalities for certain class of analytic functions connected with q-analogue of Bessel function. J. Egypt. Math. Soc. 2019, 27, 42. [Google Scholar] [CrossRef] [Green Version]
  7. El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
  8. Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
  9. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX); U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
  10. Erdéyli, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
  11. Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
  12. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, More Special Functions; USSR Academy of Sciences: Moscow, Russia, 1990; Volume 1. [Google Scholar]
  13. Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
  14. Weisstein, E.W. Lerch Transcendent, from MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/LerchTranscendent.html (accessed on 2 October 2021).
  15. Lewin, L. Polylogarithms and Associated Functions; North-Holland Publishing Co.: New York, NY, USA, 1981. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Reynolds, R.; Stauffer, A. A Note on the Summation of the Incomplete Gamma Function. Symmetry 2021, 13, 2369. https://doi.org/10.3390/sym13122369

AMA Style

Reynolds R, Stauffer A. A Note on the Summation of the Incomplete Gamma Function. Symmetry. 2021; 13(12):2369. https://doi.org/10.3390/sym13122369

Chicago/Turabian Style

Reynolds, Robert, and Allan Stauffer. 2021. "A Note on the Summation of the Incomplete Gamma Function" Symmetry 13, no. 12: 2369. https://doi.org/10.3390/sym13122369

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop