Continuity and Analyticity for the Generalized Benjamin–Ono Equation
Abstract
:1. Introduction
2. Priori Estimates and Lifespan of Solution
3. Nonuniform Dependence for the Solution to g-BO
3.1. Approximate Solutions
3.2. Error Estimation between Approximate and Actual Solutions
3.3. Proof of Theorem 1
4. Hölder Continuous in -Topology
5. Gevrey Regularity and Analyticity for g-BO System
5.1. Analytic Solutions for g-BO in
5.2. Continuity of the Data-to-Solution Map in
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, T. Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 1967, 29, 559–562. [Google Scholar] [CrossRef]
- Ono, H. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 1975, 39, 1082–1091. [Google Scholar] [CrossRef]
- Ablowitz, M.; Fokas, A. The inverse scattering transform for the Benjamin–Ono equation, a pivot for multidimensional problems. Stud. Appl. Math. 1983, 68, 1–10. [Google Scholar]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 1895, 39, 22–443. [Google Scholar] [CrossRef]
- Burq, N.; Planchon, F. On the well-posedness of the Benjamin–Ono equation. Math. Ann. 2008, 340, 497–542. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, A.D.; Kenig, C.E. Global well-posedness of the Benjamin–Ono equation on low-regularity spaces. J. Amer. Math. Soc. 2007, 20, 753–798. [Google Scholar] [CrossRef] [Green Version]
- Iorio, J.R. On the Cauchy problem for the Benjamin–Ono equation. Comm. Partial Differ. Equ. 1986, 11, 1031–1081. [Google Scholar]
- Kenig, C.E.; Koenig, K.D. On the local well-posedness of the Benjamin–Ono and modified Benjamin–Ono equations. Math. Res. Lett. 2003, 10, 879–895. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Tzvetkov, N. On the local well-posedness of the Benjamin–Ono equation in Hs(R). Int. Math. Res. Not. 2003, 26, 1449–1464. [Google Scholar] [CrossRef]
- Ponce, G. On the global well-posedness of the Benjamin–Ono equation. Differ. Integral Equ. 1991, 4, 527–542. [Google Scholar]
- Tao, T. Global well-posedness of the Benjamin–Ono equation on H1. J. Hyperbolic Differ. Equ. 2004, 1, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.; Tzvetkov, N. Nonlinear wave interactions for the Benjamin–Ono equation. Int. Math. Res. Not. 2005, 30, 1833–1847. [Google Scholar] [CrossRef]
- Fonseca, G.; Ponce, G. The IVP for the Benjamin–Ono equation in weighted Sobolev spaces. J. Funct. Anal. 2011, 260, 436–459. [Google Scholar] [CrossRef] [Green Version]
- Kenig, C.E.; Ponce, G.; Vega, L. On the generalized Benjamin–Ono equations. Trans. Amer. Math. Soc. 1994, 342, 155–172. [Google Scholar] [CrossRef]
- Molinet, L.; Ribaud, F. Well-posedness results for the generalized Benjamin–Ono equation with small initial data. J. Math. Pures Appl. 2004, 83, 277–311. [Google Scholar] [CrossRef] [Green Version]
- Molinet, L.; Ribaud, F. On the Cauchy problem for the generalized Benjamin–Ono equation with small initial data. C. R. Acad. Sci. Paris Ser. 2003, 337, 523–526. [Google Scholar] [CrossRef]
- Wang, B.; Huang, C. Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 2007, 239, 213–250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S. Continuity and analyticity for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs. Monatsh. Math. 2017, 182, 195–238. [Google Scholar] [CrossRef]
- Zhou, S.; Qiao, Z.; Mu, C.; Wei, L. Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude. J. Differ. Equ. 2017, 263, 910–933. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, B.; Chen, R. Non-uniform dependence on initial data for the periodic Constantin-Lannes equation. J. Math. Phys. 2018, 59, 031502. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, S.; Mu, C.; Luo, H. Non-uniform dependence on initial data for the twocomponent fractional shallow water wave system. Nonlinear Anal. 2020, 192, 111714. [Google Scholar] [CrossRef]
- Luo, W.; Yin, Z. Gevrey regularity and analyticity for Camassa-Holm type systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2018, 18, 1061–1079. [Google Scholar] [CrossRef]
- Kato, T.; Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 1988, 41, 891–907. [Google Scholar] [CrossRef]
- Taylor, M. Commutator estimates. Proc. Amer. Math. Soc. 2003, 131, 1501–1507. [Google Scholar] [CrossRef] [Green Version]
- Himonas, A.; Mantzavinos, D. Hölder Continuity for the Fokas-Olver-Rosenau-Qiao Equation. J. Nonlinear Sci. 2014, 24, 1105–1124. [Google Scholar] [CrossRef]
- Kato, T. Quasi-linear equations of evolution, with applications to partial differential equations. In Spectral Theory and Differential Equations; Lecture Notes in Math; Springer: Berlin, Germany, 1975; Volume 448, pp. 25–70. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Wang, B.; Chen, R. Continuity and Analyticity for the Generalized Benjamin–Ono Equation. Symmetry 2021, 13, 2435. https://doi.org/10.3390/sym13122435
Pan X, Wang B, Chen R. Continuity and Analyticity for the Generalized Benjamin–Ono Equation. Symmetry. 2021; 13(12):2435. https://doi.org/10.3390/sym13122435
Chicago/Turabian StylePan, Xiaolin, Bin Wang, and Rong Chen. 2021. "Continuity and Analyticity for the Generalized Benjamin–Ono Equation" Symmetry 13, no. 12: 2435. https://doi.org/10.3390/sym13122435
APA StylePan, X., Wang, B., & Chen, R. (2021). Continuity and Analyticity for the Generalized Benjamin–Ono Equation. Symmetry, 13(12), 2435. https://doi.org/10.3390/sym13122435