Historical Introduction to Chiral Quark Models
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Zweig, G. An SU(3) Model for Strong Interaction Symmetry and Its Breaking; Version 1; Hadronic Press: Nonantum, MA, USA, 1964. [Google Scholar]
- Greenberg, O. Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons. Phys. Rev. Lett. 1964, 13, 598–602. [Google Scholar] [CrossRef]
- Han, M.Y.; Nambu, Y. Three-Triplet Model with Double SU(3) Symmetry. Phys. Rev. 1965, 139, B1006–B1010. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, H.; Gell-Mann, M.; Leutwyler, H. Advantages of the Color Octet Gluon Picture. Phys. Lett. B 1973, 47, 365–368. [Google Scholar] [CrossRef]
- Politzer, H. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Non-Abelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J.; Pagels, H. Quantum Chromodynamics: A Review. Phys. Rept. 1978, 36, 137. [Google Scholar] [CrossRef]
- De Rújula, A.; Georgi, H.; Glashow, S.L. Hadron masses in a gauge theory. Phys. Rev. D 1975, 12, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Eichten, E.; Gottfried, K.; Kinoshita, T.; Lane, K.D.; Yan, T.M. Charmonium: The model. Phys. Rev. D 1978, 17, 3090–3117. [Google Scholar] [CrossRef]
- Politzer, H. Effective quark masses in the chiral limit. Nucl. Phys. B 1976, 117, 397–406. [Google Scholar] [CrossRef]
- Isgur, N.; Karl, G. P-wave baryons in the quark model. Phys. Rev. D 1978, 18, 4187–4205. [Google Scholar] [CrossRef]
- Isgur, N.; Karl, G. Positive-parity excited baryons in a quark model with hyperfine interactions. Phys. Rev. D 1979, 19, 2653–2677. [Google Scholar] [CrossRef]
- Capstick, S.; Isgur, N. Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 1986, 34, 2809–2835. [Google Scholar] [CrossRef] [PubMed]
- Chodos, A.; Jaffe, R.L.; Johnson, K.; Thorn, C.B.; Weisskopf, V.F. New extended model of hadrons. Phys. Rev. D 1974, 9, 3471–3495. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, S.; Isgur, N. Mesons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D 1985, 32, 189–231. [Google Scholar] [CrossRef] [PubMed]
- Chodos, A.; Jaffe, R.; Johnson, K.; Thorn, C.B. Baryon Structure in the Bag Theory. Phys. Rev. D 1974, 10, 2599. [Google Scholar] [CrossRef]
- Oka, M.; Yazaki, K. Nuclear Force in a Quark Model. Phys. Lett. B 1980, 90, 41–44. [Google Scholar] [CrossRef]
- Faessler, A.; Fernandez, F.; Lübeck, G.; Shimizu, K. The quark model and the nature of the repulsive core of the nucleon-nucleon interaction. Phys. Lett. B 1982, 112, 201–205. [Google Scholar] [CrossRef]
- Faessler, A.; Fernandez, F.; Lübeck, G.; Shimizu, K. The nucleon-nucleon interaction and the role of the [42] orbital six-quark symmetry. Nuclear Phys. A 1983, 402, 555–568. [Google Scholar] [CrossRef]
- DeTar, C. Hadronic deformation energy. II. Two-nucleon interaction. Phys. Rev. D 1978, 17, 323–339. [Google Scholar] [CrossRef]
- Isgur, N. An Introduction to the quark model for baryons. Int. J. Mod. Phys. E 1992, 1, 465–490. [Google Scholar] [CrossRef]
- DeTar, C.E.; Donoghue, J.F. BAG MODELS OF HADRONS. Ann. Rev. Nucl. Part. Sci. 1983, 33, 235–264. [Google Scholar] [CrossRef]
- Giannini, M.; Santopinto, E. The hypercentral Constituent Quark Model and its application to baryon properties. Chin. J. Phys. 2015, 53, 020301. [Google Scholar] [CrossRef]
- Skyrme, T. A Nonlinear field theory. Proc. R. Soc. Lond. A 1961, 260, 127–138. [Google Scholar] [CrossRef]
- Gross, D.J.; Neveu, A. Dynamical Symmetry Breaking in Asymptotically Free Field Theories. Phys. Rev. D 1974, 10, 3235. [Google Scholar] [CrossRef]
- Karbstein, F.; Thies, M. Integrating out the Dirac sea: Effective field theory approach to exactly solvable four-fermion models. Phys. Rev. D 2008, 77, 025008. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.; Thies, M. Competing mechanisms of chiral symmetry breaking in a generalized Gross-Neveu model. Phys. Rev. D 2010, 81, 105027. [Google Scholar] [CrossRef] [Green Version]
- Chodos, A.; Thorn, C.B. Chiral invariance in a bag theory. Phys. Rev. D 1975, 12, 2733–2743. [Google Scholar] [CrossRef]
- Brown, G.; Rho, M. The Little Bag. Phys. Lett. B 1979, 82, 177–180. [Google Scholar] [CrossRef]
- Thomas, A.W. Chiral Symmetry and the Bag Model: A New Starting Point for Nuclear Physics. Adv. Nucl. Phys. 1984, 13, 1–137. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A. Building the Nucleus From Quarks: The Cloudy bag Model and the Quark Description of the Nucleon-nucleon Wave Functions. Int. Rev. Nucl. Phys. 1984, 1, 189–323. [Google Scholar] [CrossRef]
- Friedberg, R.; Lee, T.D. Fermion-field nontopological solitons. Phys. Rev. D 1977, 15, 1694–1711. [Google Scholar] [CrossRef]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Diakonov, D.; Petrov, V. A theory of light quarks in the instanton vacuum. Nucl. Phys. B 1986, 272, 457–489. [Google Scholar] [CrossRef]
- Manohar, A.; Georgi, H. Chiral quarks and the non-relativistic quark model. Nucl. Phys. B 1984, 234, 189–212. [Google Scholar] [CrossRef]
- Goldflam, R.; Wilets, L. Soliton bag model. Phys. Rev. D 1982, 25, 1951–1963. [Google Scholar] [CrossRef]
- Birse, M.C.; Banerjee, M.K. A chiral soliton model of nucleon and delta. Phys. Lett. B 1984, 136, 284–288. [Google Scholar] [CrossRef]
- Kahana, S.; Ripka, G.; Soni, V. Soliton with Valence Quarks in the Chiral Invariant Sigma Model. Nucl. Phys. A 1984, 415, 351–364. [Google Scholar] [CrossRef]
- Seki, R.; Ohta, S. Nontopological and topological chiral soliton bags as a model of the nucleon. Nucl. Phys. A 1985, 437, 541–566. [Google Scholar] [CrossRef]
- Shigemi, O.; Seki, R. Spin-isospin projection of hedgehog chiral soliton bags using collective coordinates. Nucl. Phys. A 1986, 458, 669–688. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Levy, M. The axial vector current in beta decay. Nuovo Cim. 1960, 16, 705. [Google Scholar] [CrossRef]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II. Phys. Rev. 1961, 124, 246–254. [Google Scholar] [CrossRef]
- Eguchi, T. New approach to collective phenomena in superconductivity models. Phys. Rev. D 1976, 14, 2755–2763. [Google Scholar] [CrossRef]
- Alkofer, R.; Reinhardt, H.; Weigel, H. Baryons as chiral solitons in the Nambu-Jona-Lasinio model. Phys. Rep. 1996, 265, 139–252. [Google Scholar] [CrossRef] [Green Version]
- Christov, C.; Blotz, A.; Kim, H.C.; Pobylitsa, P.; Watabe, T.; Meissner, T.; Ruiz Arriola, E.; Goeke, K. Baryons as nontopological chiral solitons. Prog. Part. Nucl. Phys. 1996, 37, 91–191. [Google Scholar] [CrossRef] [Green Version]
- Weigel, H. Chiral Soliton Models for Baryons; Springer: Berlin/Heidelberg, Germany, 2008; Volume 743. [Google Scholar]
- Shuryak, E.V. The Role of Instantons in Quantum Chromodynamics. 1. Physical Vacuum. Nucl. Phys. B 1982, 203, 93. [Google Scholar] [CrossRef]
- Diakonov, D. Foundations of the constituent quark model. Prog. Part. Nucl. Phys. 1996, 36, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Diakonov, D.; Petrov, V.Y. Nucleons as chiral solitons. In At The Frontier of Particle Physics: Handbook of QCD; World Scientific Publishing Company: Signapore, 2000; pp. 359–415. [Google Scholar] [CrossRef] [Green Version]
- Diakonov, D. Instantons at work. Prog. Part. Nucl. Phys. 2003, 51, 173–222. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, F.; Valcarce, A.; Straub, U.; Faessler, A. The Nucleon-nucleon interaction in terms of quark degrees of freedom. J. Phys. G 1993, 19, 2013–2026. [Google Scholar] [CrossRef]
- Vijande, J.; Fernandez, F.; Valcarce, A. Constituent quark model study of the meson spectra. J. Phys. G 2005, 31, 481. [Google Scholar] [CrossRef] [Green Version]
- Glozman, L.; Riska, D. The spectrum of the nucleons and the strange hyperons and chiral dynamics. Phys. Rep. 1996, 268, 263–303. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.S.; Weisberger, W.I. Remarks on the Static Potential in Quantum Chromodynamics. Phys. Rev. D 1979, 20, 3239. [Google Scholar] [CrossRef]
- Billoire, A. How Heavy Must Be Quarks in Order to Build Coulombic q anti-q Bound States. Phys. Lett. B 1980, 92, 343–347. [Google Scholar] [CrossRef]
- Bali, G.S.; Neff, H.; Duessel, T.; Lippert, T.; Schilling, K. Observation of string breaking in QCD. Phys. Rev. D 2005, 71, 114513. [Google Scholar] [CrossRef] [Green Version]
- Valcarce, A.; Fernandez, F.; Gonzalez, P.; Vento, V. Chiral quark cluster model study of the low-energy baryon spectrum. Phys. Lett. B 1996, 367, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Segovia, J.; Entem, D.; Fernandez, F. Is chiral symmetry restored in the excited meson spectrum? Phys. Lett. B 2008, 662, 33–36. [Google Scholar] [CrossRef]
- Segovia, J.; Yasser, A.; Entem, D.; Fernandez, F. JPC=1– hidden charm resonances. Phys. Rev. D 2008, 78, 114033. [Google Scholar] [CrossRef]
- Segovia, J.; Yasser, A.; Entem, D.; Fernandez, F. Ds-1 (2536) + decays and the properties of P-wave charmed strange mesons. Phys. Rev. D 2009, 80, 054017. [Google Scholar] [CrossRef]
- Segovia, J.; Entem, D.; Fernandez, F. Charmonium resonances in e+ e- exclusive reactions around the psi(4415) region. Phys. Rev. D 2011, 83, 114018. [Google Scholar] [CrossRef]
- Segovia, J.; Entem, D.R.; Fernandez, F. Charmed-strange Meson Spectrum: Old and New Problems. Phys. Rev. D 2015, 91, 094020. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Canonical description of the new LHCb resonances. Phys. Rev. D 2016, 94, 114018. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. The S- and P-Wave Low-Lying Baryons in the Chiral Quark Model. Few Body Syst. 2018, 59, 113. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Ortega, P.G.; Segovia, J. Triply heavy baryons in the constituent quark model. Chin. Phys. C 2020, 44, 023102. [Google Scholar] [CrossRef]
- Valcarce, A.; Fernandez, F.; Buchmann, A.; Faessler, A. Can one simultaneously describe the deuteron properties and the nucleon-nucleon phase shifts in the quark cluster model? Phys. Rev. C 1994, 50, 2246–2249. [Google Scholar] [CrossRef]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernandez, F. Molecular components in P-wave charmed-strange mesons. Phys. Rev. D 2016, 94, 074037. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Threshold effects in P-wave bottom-strange mesons. Phys. Rev. D 2017, 95, 034010. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Charmonium resonances in the 3.9 GeV/c2 energy region and the X(3915)/X(3930) puzzle. Phys. Lett. B 2018, 778, 1–5. [Google Scholar] [CrossRef]
- Vijande, J.; Valcarce, A.; Tsushima, K. Dynamical study of bf QQ- anti-u anti-d mesons. Phys. Rev. D 2006, 74, 054018. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J. The structure of pentaquarks in the chiral quark model. Phys. Rev. D 2017, 95, 014010. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Hidden-bottom pentaquarks. Phys. Rev. D 2019, 99, 014035. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Doubly-heavy tetraquarks. Phys. Rev. D 2020, 101, 014001. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. Doubly Charmed Pentaquarks. Phys. Rev. D 2020, 101, 074030. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Ping, J.; Segovia, J. QQss tetraquarks in the chiral quark model. Phys. Rev. D 2020, 102, 054023. [Google Scholar] [CrossRef]
- Manohar, A.V. Equivalence of the Chiral Soliton and Quark Models in Large N. Nucl. Phys. B 1984, 248, 19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, F.; Segovia, J. Historical Introduction to Chiral Quark Models. Symmetry 2021, 13, 252. https://doi.org/10.3390/sym13020252
Fernández F, Segovia J. Historical Introduction to Chiral Quark Models. Symmetry. 2021; 13(2):252. https://doi.org/10.3390/sym13020252
Chicago/Turabian StyleFernández, Francisco, and Jorge Segovia. 2021. "Historical Introduction to Chiral Quark Models" Symmetry 13, no. 2: 252. https://doi.org/10.3390/sym13020252
APA StyleFernández, F., & Segovia, J. (2021). Historical Introduction to Chiral Quark Models. Symmetry, 13(2), 252. https://doi.org/10.3390/sym13020252