Coupling Hadron-Hadron Thresholds within a Chiral Quark Model Approach
Abstract
1. Introduction
2. The Naive Chiral Quark Model
3. The Model
4. The Unquenched Quark Model
5. Coupled Channel Effects
5.1. Isospin Breaking Effects
5.2. HQSS and HFS Breaking
5.3. Threshold Cusps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HQQS | Heavy Quark Spin Symmetry |
HFS | Heavy Flavor Symmetry |
PT | Chiral Perturbation Theory |
QCD | Quantum Chromodynamics |
References
- Aubert, J.J.; Becker, U.; Biggs, P.J.; Burger, J.; Chen, M.; Everhart, G.; Goldhagen, P.; Leong, J.; McCorriston, T.; Rhoades, T.G.; et al. Experimental Observation of a Heavy Particle J. Phys. Rev. Lett. 1974, 33, 1404–1406. [Google Scholar] [CrossRef]
- Augustin, J.E.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Feldman, G.J.; Fischer, G.E.; Fryberger, D.; Hanson, G.; Jean-Marie, B.; et al. Discovery of a Narrow Resonance in e+e− Annihilation. Phys. Rev. Lett. 1974, 33, 1406–1408. [Google Scholar] [CrossRef]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285–1292. [Google Scholar] [CrossRef]
- Herb, S.W.; Hom, D.C.; Lederman, L.M.; Sens, J.C.; Snyder, H.D.; Yoh, J.K.; Appel, J.A.; Brown, B.C.; Brown, C.N.; Innes, W.R.; et al. Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions. Phys. Rev. Lett. 1977, 39, 252–255. [Google Scholar] [CrossRef]
- Kelly, R.L.; Horne, C.P.; Losty, M.J.; Rittenberg, A.; Shimada, T.; Trippe, T.G.; Wohl, C.G.; Yost, G.P.; Barash-Schmidt, N.; Bricman, C.; et al. Review of particle properties. Rev. Mod. Phys. 1980, 52, S1–S286. [Google Scholar] [CrossRef]
- Hagiwara, K.; Montanet, L.; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Armstrong, B.; Wagman, G.S.; Murayama, H.; Stone, J.; et al. Review of Particle Properties. Phys. Rev. D 2002, 66, 010001. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Cazzoli, E.G.; Cnops, A.M.; Connolly, P.L.; Louttit, R.I.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tso, T.T.; Williams, H.H. Evidence for ΔS=−ΔQ Currents or Charmed-Baryon Production by Neutrinos. Phys. Rev. Lett. 1975, 34, 1125–1128. [Google Scholar] [CrossRef]
- Eichten, E.; Gottfried, K.; Kinoshita, T.; Lane, K.D.; Yan, T.M. Charmonium: The Model. Phys. Rev. D 1978, 17, 3090–3117, Erratum in 1980, 21, 313. [Google Scholar] [CrossRef]
- Eichten, E.; Gottfried, K.; Kinoshita, T.; Lane, K.D.; Yan, T.M. Charmonium: Comparison with Experiment. Phys. Rev. D 1980, 21, 203–233. [Google Scholar] [CrossRef]
- Gupta, S.N.; Radford, S.F.; Repko, W.W. Semirelativistic Potential Model for Charmonium. Phys. Rev. D 1985, 31, 160. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.; Close, F.E.; Page, P.R.; Swanson, E.S. Higher quarkonia. Phys. Rev. D 1997, 55, 4157–4188. [Google Scholar] [CrossRef]
- Ebert, D.; Faustov, R.N.; Galkin, V.O. Properties of heavy quarkonia and Bc mesons in the relativistic quark model. Phys. Rev. D 2003, 67, 014027. [Google Scholar] [CrossRef]
- Eichten, E.; Godfrey, S.; Mahlke, H.; Rosner, J.L. Quarkonia and their transitions. Rev. Mod. Phys. 2008, 80, 1161–1193. [Google Scholar] [CrossRef]
- Danilkin, I.V.; Simonov, Y.A. Channel coupling in heavy quarkonia: Energy levels, mixing, widths and new states. Phys. Rev. D 2010, 81, 074027. [Google Scholar] [CrossRef]
- Ferretti, J.; Santopinto, E. Higher mass bottomonia. Phys. Rev. D 2014, 90, 094022. [Google Scholar] [CrossRef]
- Godfrey, S.; Moats, K. Bottomonium Mesons and Strategies for their Observation. Phys. Rev. D 2015, 92, 054034. [Google Scholar] [CrossRef]
- Caswell, W.E.; Lepage, G.P. Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories. Phys. Lett. B 1986, 167, 437–442. [Google Scholar] [CrossRef]
- Pineda, A.; Soto, J. Effective field theory for ultrasoft momenta in NRQCD and NRQED. Nucl. Phys. B Proc. Suppl. 1998, 64, 428–432. [Google Scholar] [CrossRef]
- Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A. Effective Field Theories for Heavy Quarkonium. Rev. Mod. Phys. 2005, 77, 1423. [Google Scholar] [CrossRef]
- Dudek, J.J.; Edwards, R.G.; Mathur, N.; Richards, D.G. Charmonium excited state spectrum in lattice QCD. Phys. Rev. D 2008, 77, 034501. [Google Scholar] [CrossRef]
- Gray, A.; Allison, I.; Davies, C.T.H.; Dalgic, E.; Lepage, G.P.; Shigemitsu, J.; Wingate, M. The Upsilon spectrum and m(b) from full lattice QCD. Phys. Rev. D 2005, 72, 094507. [Google Scholar] [CrossRef]
- Meinel, S. The Bottomonium spectrum from lattice QCD with 2+1 flavors of domain wall fermions. Phys. Rev. D 2009, 79, 094501. [Google Scholar] [CrossRef]
- Gottfried, K. The spectroscopy of massive quark-antiquark systems, Progress in Particle and Nuclear Physics. Prog. Part. Nucl. Phys. 1982, 8, 49–71. [Google Scholar] [CrossRef]
- Gostev, V.B.; Mineev, V.S.; Frenkin, A.R. The inverse problem of quantum mechanics for a linear potentia. Theor. Math. Phys. 1983, 56, 682–686. [Google Scholar] [CrossRef]
- Sumino, Y. QCD potential as a “Coulomb-plus-linear” potential. Phys. Lett. B 2003, 571, 173–183. [Google Scholar] [CrossRef]
- Mateu, V.; Ortega, P.G.; Entem, D.R.; Fernández, F. Calibrating the Naïve Cornell Model with NRQCD. Eur. Phys. J. C 2019, 79, 323. [Google Scholar] [CrossRef]
- Copley, L.A.; Isgur, N.; Karl, G. Charmed baryons in a quark model with hyperfine interactions. Phys. Rev. D 1979, 20, 768–775. [Google Scholar] [CrossRef]
- Stanley, D.P.; Robsen, D. Do Quarks Interact Pairwise and Satisfy the Color Hypothesis? Phys. Rev. Lett. 1980, 45, 235–238. [Google Scholar] [CrossRef]
- Choi, S.K.; Olsen, S.L.; Abe, K.; Abe, T.; Adachi, I.; Ahn, B.S.; Aihara, H.; Akai, K.; Akatsu, M.; Akemoto, M.; et al. Observation of a Narrow Charmoniumlike State in Exclusive B±→K±π+π−J/ψ Decays. Phys. Rev. Lett. 2003, 91, 262001. [Google Scholar] [CrossRef] [PubMed]
- Acosta, D.; Affolder, T.; Ahn, M.H.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; et al. Observation of the Narrow State X(3872)→J/ψπ+π− in Collisions at = 1.96 TeV. Phys. Rev. Lett. 2004, 93, 072001. [Google Scholar] [CrossRef]
- Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.L.; Ahmed, S.N.; et al. Observation and Properties of the X(3872) Decaying to J/ψπ+π− in Collisions at = 1.96 TeV. Phys. Rev. Lett. 2004, 93, 162002. [Google Scholar] [CrossRef]
- Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Gaillard, J.M.; Hicheur, A.; Karyotakis, Y.; Lees, J.P.; Tisserand, V.; Zghiche, A.; et al. Study of the B−→J/ψK−π+π− decay and measurement of the B−→X(3872)K− branching fraction. Phys. Rev. D 2005, 71, 071103. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Observation of J/ψp Resonances Consistent with Pentaquark States in →J/ψK−p Decays. Phys. Rev. Lett. 2015, 115, 072001. [Google Scholar] [CrossRef]
- Aaij, R.; Beteta, C.A.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Observation of a Narrow Pentaquark State, Pc(4312)+, and of the Two-Peak Structure of the Pc(4450)+. Phys. Rev. Lett. 2019, 122, 222001. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.; Georgi, H. Chiral quarks and the non-relativistic quark model. Nucl. Phys. B 1984, 234, 189–212. [Google Scholar] [CrossRef]
- Fernandez, F.; Valcarce, A.; Straub, U.; Faessler, A. The nucleon-nucleon interaction in terms of quark degrees of freedom. J. Phys. G Nucl. Part. Phys. 1993, 19, 2013–2026. [Google Scholar] [CrossRef]
- Vijande, J.; Fernández, F.; Valcarce, A. Constituent quark model study of the meson spectra. J. Phys. G Nucl. Part. Phys. 2005, 31, 481–506. [Google Scholar] [CrossRef]
- Burgio, G.; Schröck, M.; Reinhardt, H.; Quandt, M. Running mass, effective energy, and confinement: The lattice quark propagator in Coulomb gauge. Phys. Rev. D 2012, 86, 014506. [Google Scholar] [CrossRef]
- Bali, G.S. QCD forces and heavy quark bound states. Phys. Rep. 2001, 343, 1–136. [Google Scholar] [CrossRef]
- Bali, G.S.; Neff, H.; Düssel, T.; Lippert, T.; Schilling, K. Observation of string breaking in QCD. Phys. Rev. D 2005, 71, 114513. [Google Scholar] [CrossRef]
- De Rújula, A.; Georgi, H.; Glashow, S.L. Hadron masses in a gauge theory. Phys. Rev. D 1975, 12, 147–162. [Google Scholar] [CrossRef]
- Segovia, J.; Yasser, A.M.; Entem, D.R.; Fernández, F. JPC=1−− hidden charm resonances. Phys. Rev. D 2008, 78, 114033. [Google Scholar] [CrossRef]
- Segovia, J.; Entem, D.R.; Fernandez, F.; Hernandez, E. Constituent quark model description of charmonium phenomenology. Int. J. Mod. Phys. E 2013, 22, 1330026. [Google Scholar] [CrossRef]
- Kamimura, M. Nonadiabatic coupled-rearrangement-channel approach to muonic molecules. Phys. Rev. A 1988, 38, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, E.; Kino, Y.; Kamimura, M. Gaussian expansion method for few-body systems. Prog. Part. Nucl. Phys. 2003, 51, 223–307. [Google Scholar] [CrossRef]
- Hiyama, E. Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics. Prog. Theor. Exp. Phys. 2012, 2012, 01A204. [Google Scholar] [CrossRef][Green Version]
- Morton, D.; Wu, Q.; Drake, G.W. Energy Levels for the Stable Isotopes of Atomic Helium (4He I and 3He I). Can. J. Phys. 2006, 84, 83–105. [Google Scholar] [CrossRef]
- Bhaduri, R.K.; Cohler, L.E.; Nogami, Y. A unified potential for mesons and baryons. Il Nuovo Cimento A 1981, 65. [Google Scholar] [CrossRef]
- Silvestre-Brac, B. Spectrum and Static Properties of Heavy Baryons. Few-Body Syst. 1996, 20. [Google Scholar] [CrossRef]
- Kandula, D.Z.; Gohle, C.; Pinkert, T.J.; Ubachs, W.; Eikema, K.S.E. Extreme Ultraviolet Frequency Comb Metrology. Phys. Rev. Lett. 2010, 105, 063001. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.C. Energy Levels of Neutral Helium (4He I). J. Phys. Chem. Ref. Data 1973, 2, 257–266. [Google Scholar] [CrossRef]
- Tech, J.L.; Ward, J.F. Accurate Wavelength Measurement of the 1s2p3P0 − 2p23P Transition in 4He I. Phys. Rev. Lett. 1971, 27, 367–370. [Google Scholar] [CrossRef]
- Micu, L. Decay rates of meson resonances in a quark model. Nucl. Phys. 1969, B10, 521–526. [Google Scholar] [CrossRef]
- Le Yaouanc, A.; Oliver, L.; Pène, O.; Raynal, J.C. “Naive” Quark-Pair-Creation Model of Strong-Interaction Vertices. Phys. Rev. D 1973, 8, 2223–2234. [Google Scholar] [CrossRef]
- Le Yaouanc, A.; Oliver, L.; Pène, O.; Raynal, J.C. Naive quark-pair—Creation model and baryon decays. Phys. Rev. D 1974, 9, 1415–1419. [Google Scholar] [CrossRef]
- Yaouanc, A.L.; Oliver, L.; Pene, O.; Raynal, J.C. Strong decays of ψ(4028) as a radial excitation of charmonium. Phys. Lett. B 1977, 71, 397–399. [Google Scholar] [CrossRef]
- Yaouanc, A.L.; Oliver, L.; Pène, O.; Raynal, J. Why is ψ(4414) so narrow? Phys. Lett. B 1977, 72, 57–61. [Google Scholar] [CrossRef]
- Ackleh, E.S.; Barnes, T.; Swanson, E.S. On the mechanism of open-flavor strong decays. Phys. Rev. D 1996, 54, 6811–6829. [Google Scholar] [CrossRef]
- Segovia, J.; Entem, D.; Fernández, F. Scaling of the P03 strength in heavy meson strong decays. Phys. Lett. B 2012, 715, 322–327. [Google Scholar] [CrossRef]
- Bijker, R.; Santopinto, E. Unquenched quark model for baryons: Magnetic moments, spins, and orbital angular momenta. Phys. Rev. C 2009, 80, 065210. [Google Scholar] [CrossRef]
- Heikkilä, K.; Törnqvist, N.A.; Ono, S. Heavy and quarkonium states and unitarity effects. Phys. Rev. D 1984, 29, 110–120. [Google Scholar] [CrossRef]
- Baru, V.; Hanhart, C.; Kalashnikova, Y.S.; Kudryavtsev, A.E.; Nefediev, A.V. Interplay of quark and meson degrees of freedom in a near-threshold resonance. Eur. Phys. J A 2010, 44, 93. [Google Scholar] [CrossRef]
- Ortega, P.G.; Entem, D.R.; Fernández, F. Unquenching the Quark Model in a Nonperturbative Scheme. Adv. High Energy Phys. 2019, 2019, 3465159. [Google Scholar] [CrossRef]
- Abulencia, A.; Acosta, D.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; et al. Measurement of the Dipion Mass Spectrum in X(3872)→J/ψπ+π− Decays. Phys. Rev. Lett. 2006, 96, 102002. [Google Scholar] [CrossRef] [PubMed]
- Abe, K. Evidence for X(3872) —> γ J / ψ and the sub-threshold decay X(3872) —> ω J / ψLepton and photon interactions at high energies. In Proceedings of the 22nd International Symposium, LP 2005, Uppsala, Sweden, 30 June–5 July 2005. [Google Scholar]
- Aushev, T.; Eidelman, S.; Gabyshev, N.; Shwartz, B.; Usov, Y.; Zhulanov, V.; Zyukova, O.; Drutskoy, A.; Goldenzweig, P.; Lange, J.S.; et al. Study of the B→X(3872)(→D*0 )K decay. Phys. Rev. D 2010, 81, 031103. [Google Scholar] [CrossRef]
- Guo, F.K. Novel Method for Precisely Measuring the X(3872) Mass. Phys. Rev. Lett. 2019, 122, 202002. [Google Scholar] [CrossRef]
- Aaij, R.; Abellan Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Study of the ψ2(3823) and χc1(3872) states in B+→Jψπ+π−K+ decays. JHEP 2020, 08, 123. [Google Scholar] [CrossRef]
- Swanson, E.S. Diagnostic decays of the X(3872). Phys. Lett. B 2004, 598, 197–202. [Google Scholar] [CrossRef]
- Gamermann, D.; Oset, E. Isospin breaking effects in the X(3872) resonance. Phys. Rev. D 2009, 80, 014003. [Google Scholar] [CrossRef]
- Gamermann, D.; Nieves, J.; Oset, E.; Arriola, E.R. Couplings in coupled channels versus wave functions: Application to the X(3872) resonance. Phys. Rev. D 2010, 81, 014029. [Google Scholar] [CrossRef]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Coupled channel approach to the structure of the X(3872). Phys. Rev. D 2010, 81, 054023. [Google Scholar] [CrossRef]
- Ferretti, J.; Galatà, G.; Santopinto, E. Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum. Phys. Rev. C 2013, 88, 015207. [Google Scholar] [CrossRef]
- Ortega, P.G.; Entem, D.R.; Fernández, F. Molecular structures in the charmonium spectrum: TheXYZpuzzle. J. Phys. G Nucl. Part. Phys. 2013, 40, 065107. [Google Scholar] [CrossRef]
- Burns, T.J. Phenomenology of Pc(4380)+, Pc(4450)+ and related states. Eur. Phys. J. A 2015, 51, 152. [Google Scholar] [CrossRef]
- Guo, F.K.; Jing, H.J.; Meißner, U.G.; Sakai, S. Isospin breaking decays as a diagnosis of the hadronic molecular structure of the Pc(4457). Phys. Rev. D 2019, 99, 091501. [Google Scholar] [CrossRef]
- Nieves, J.; Pavón Valderrama, M. Heavy quark spin symmetry partners of the X(3872). Phys. Rev. D 2012, 86, 056004. [Google Scholar] [CrossRef]
- Hidalgo-Duque, C.; Nieves, J.; Valderrama, M.P. Light flavor and heavy quark spin symmetry in heavy meson molecules. Phys. Rev. D 2013, 87, 076006. [Google Scholar] [CrossRef]
- Baru, V.; Epelbaum, E.; Filin, A.A.; Hanhart, C.; Nefediev, A.V. Molecular partners of the X(3872) from heavy-quark spin symmetry: A fresh look. EPJ Web Conf. 2017, 137, 06002. [Google Scholar] [CrossRef]
- Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavón Valderrama, M. Consequences of heavy-quark symmetries for hadronic molecules. Phys. Rev. D 2013, 88, 054007. [Google Scholar] [CrossRef]
- Entem, D.R.; Ortega, P.G.; Fernández, F. Partners of the X(3872) and heavy quark spin symmetry breaking. AIP Conf. Proc. 2016, 1735, 060006. [Google Scholar] [CrossRef]
- Cincioglu, E.; Nieves, J.; Ozpineci, A.; Yilmazer, A.U. Quarkonium Contribution to Meson Molecules. Eur. Phys. J. C 2016, 76, 576. [Google Scholar] [CrossRef]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Charmonium resonances in the 3.9 GeV/c2 energy region and the X(3915)/X(3930) puzzle. Phys. Lett. B 2018, 778, 1–5. [Google Scholar] [CrossRef]
- Batley, J.; Lazzeroni, C.; Munday, D.J.; Slater, M.W.; Wotton, S.A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; et al. Observation of a cusp-like structure in the π0π0 invariant mass distribution from K±→π±π0π0 decay and determination of the ππ scattering lengths. Phys. Lett. B 2006, 633, 173–182. [Google Scholar] [CrossRef]
- Budini, P.; Fonda, L. Pion-Pion Interaction from Threshold Anomalies in K+ Decay. Phys. Rev. Lett. 1961, 6, 419–421. [Google Scholar] [CrossRef]
- Cabibbo, N. Determination of the a0 − a2 Pion Scattering Length from K+→π+π0π0 Decay. Phys. Rev. Lett. 2004, 93, 121801. [Google Scholar] [CrossRef]
- Cabibbo, N.; Isidori, G. Pion-pion scattering and the K→3π decay amplitudes. J. High Energy Phys. 2005, 2005, 021. [Google Scholar] [CrossRef]
- Bugg, D.V. An explanation of Belle states Z b (10610) and Z b (10650). EPL (Europhys. Lett.) 2011, 96, 11002. [Google Scholar] [CrossRef][Green Version]
- Swanson, E.S. Zb and Zc exotic states as coupled channel cusps. Phys. Rev. D 2015, 91, 034009. [Google Scholar] [CrossRef]
- Dong, X.K.; Guo, F.K.; Zou, B.S. Why there are many threshold structures in hadron spectrum with heavy quarks. arXiv 2020, arXiv:2011.14517. [Google Scholar]
- Guo, F.K.; Hanhart, C.; Wang, Q.; Zhao, Q. Could the near-threshold XYZ states be simply kinematic effects? Phys. Rev. D 2015, 91, 051504. [Google Scholar] [CrossRef]
- Aaltonen, T. Observation of the Y(4140) structure in the J/ψϕ Mass Spectrum in B±→J/ψϕK decays. arXiv 2011, arXiv:1101.6058. [Google Scholar] [CrossRef]
- Abazov, V.M. Inclusive Production of the X(4140) State in Collisions at D0. Phys. Rev. Lett. 2015, 115, 232001. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S. Observation of a peaking structure in the J/ψϕ mass spectrum from B±→J/ψϕK± decays. Phys. Lett. 2014, B734, 261–281. [Google Scholar] [CrossRef]
- Shen, C.P.; Yuan, C.Z.; Aihara, H.; Arinstein, K.; Aushev, T.; Bakich, A.M.; Balagura, V.; Barberio, E.; Bay, A.; Belous, K.; et al. Evidence for a new resonance and search for the Y(4140) in the gamma gamma —> phi J/psi process. Phys. Rev. Lett. 2010, 104, 112004. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.P. Study of B±,0→J/ψK+K−K±,0 and search for B0→J/ψϕ at BABAR. Phys. Rev. 2015, D91, 012003. [Google Scholar] [CrossRef]
- Aaij, R. Observation of J/ψϕ structures consistent with exotic states from amplitude analysis of B+→J/ψϕK+ decays. arXiv 2016, arXiv:1606.07895. [Google Scholar]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. Canonical description of the new LHCb resonances. Phys. Rev. D 2016, 94, 114018. [Google Scholar] [CrossRef]
- Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J. Zc(3900): What has been really seen? Phys. Lett. B 2016, 755, 337–342. [Google Scholar] [CrossRef]
- Pilloni, A.; Fernández-Ramírez, C.; Jackura, A.; Mathieu, V.; Mikhasenko, M.; Nys, J.; Szczepaniak, A. Amplitude analysis and the nature of the Zc(3900). Phys. Lett. B 2017, 772, 200–209. [Google Scholar] [CrossRef]
- Ikeda, Y.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Inoue, T.; Iritani, T.; Ishii, N.; Murano, K.; Sasaki, K. Fate of the Tetraquark Candidate Zc(3900) from Lattice QCD. Phys. Rev. Lett. 2016, 117, 242001. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.G.; Segovia, J.; Entem, D.R.; Fernández, F. The Zc structures in a coupled-channels model. Eur. Phys. J. C 2019, 79, 78. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Ferroli, R.B.; Ban, Y.; Becker, J.; et al. Observation of a Charged Charmoniumlike Structure in e+e−→π+π−J/ψ at = 4.26 GeV. Phys. Rev. Lett. 2013, 110, 252001. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Shen, C.P.; Yuan, C.Z.; Adachi, I.; Aihara, H.; Asner, D.M.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A.M.; et al. Study of e+e−→π+π−J/ψ and Observation of a Charged Charmoniumlike State at Belle. Phys. Rev. Lett. 2013, 110, 252002. [Google Scholar] [CrossRef] [PubMed]
- Ablikim, M.; Achasov, M.N.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Baldini Ferroli, R.; Ban, Y.; Becker, J.; et al. Observation of a Charged ()± Mass Peak in e+e−→π at = 4.26 GeV. Phys. Rev. Lett. 2014, 112, 022001. [Google Scholar] [CrossRef] [PubMed]
- Ablikim, M.; Achasov, M.N.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Baldini Ferroli, R.; Ban, Y.; Becker, J.; et al. Observation of a Charged Charmoniumlike Structure Zc(4020) and Search for the Zc(3900) in e+e−→π+π−hc. Phys. Rev. Lett. 2013, 111, 242001. [Google Scholar] [CrossRef] [PubMed]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amoroso, A.; Lou, X.; BESIII Collaboration. Observation of e+e−→π0π0hc and a Neutral Charmoniumlike Structure Zc(4020)0. Phys. Rev. Lett. 2014, 113, 212002. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.G.; Ambrose, D.J.; BESIII Collaboration. Confirmation of a charged charmoniumlike state Zc(3885)∓ in e+e−→π±()∓ with double D tag. Phys. Rev. 2015, D92, 092006. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amoroso, A.; An, F.F.; An, Q.; Bai, J.Z.; et al. Determination of the Spin and Parity of the Zc(3900). Phys. Rev. Lett. 2017, 119, 072001. [Google Scholar] [CrossRef] [PubMed]
- Ablikim, M.; Achasov, M.N.; Albayrak, O.; Ambrose, D.J.; An, F.F.; An, Q.; Bai, J.Z.; Ferroli, R.B.; Ban, Y.; Becker, J.; et al. Observation of a charged charmoniumlike structure in e+e−→()±π∓ at = 4.26 GeV. Phys. Rev. Lett. 2014, 112, 132001. [Google Scholar] [CrossRef] [PubMed]
Term | J | NIST | GEM | |
---|---|---|---|---|
0 | 0.00000000 | 0.00 | ||
0 | 20.6157751334 | 20.61 | ||
1 | 21.2180230218 | 21.21 | ||
0 | 22.920317682 | 22.91 | ||
2 | 23.07407511941 | 23.07 | ||
1 | 23.0870188528 | 23.08 | ||
0 | 23.6735709133 | 23.67 | ||
2 | 23.73633535786 | 23.73 | ||
1 | 23.7420703918 | 23.74 | ||
0 | 24.0112153129 | 24.00 | ||
2 | 24.042803734930 | 24.04 | ||
1 | 24.0458007297 | 24.04 | ||
0 | 24.1911605982 | 24.18 | ||
2 | 24.209250116893 | 24.20 |
Term | J | NIST | GEM | |
---|---|---|---|---|
1 | 19.81961484203 | 19.82 | ||
2 | 20.96408720675 | 20.98 | ||
1 | 20.96409668230 | |||
0 | 20.96421916817 | |||
1 | 22.718466742 | 22.71 | ||
2 | 23.0070734673 | 23.01 | ||
1 | 23.0070761918 | |||
0 | 23.0071097475 | |||
3 | 23.07365102990 | 23.07 | ||
2 | 23.07365134140 | |||
1 | 23.07365682165 | |||
1 | 23.593959036 | 23.59 | ||
2 | 23.7078915511 | 23.71 | ||
1 | 23.7078926664 | |||
0 | 23.7079063452 | |||
3 | 23.73609051247 | 23.73 | ||
2 | 23.73609066143 | |||
1 | 23.73609295768 | |||
1 | 23.9719717413 | 23.97 | ||
2 | 24.0282253870 | 24.02 | ||
1 | 24.0282259477 | |||
0 | 24.0282328220 | |||
3 | 24.042662564819 | 24.04 | ||
2 | 24.042662644310 | |||
1 | 24.042663817021 | |||
1 | 24.1689985463 | 24.16 | ||
2 | 24.2008157776 | 24.20 | ||
1 | 24.2008160981 | |||
0 | 24.2008200312 | |||
3 | 24.209163433335 | 24.22 | ||
2 | 24.209163480258 | |||
1 | 24.209164158016 |
State | M(FD) | M(GEM) | (FD) | (GEM) | (FD) | (GEM) |
---|---|---|---|---|---|---|
2300 | 2298.5 | 0.097 | 0.0984 | 0.117 | 0.1180 | |
2473 | 2475.0 | 0.111 | 0.1116 | −0.224 | −0.2247 | |
0.134 | 0.1347 | |||||
0.494 | 0.4941 | |||||
5653 | 5649.6 | 0.043 | 0.0435 | 0.115 | 0.1169 | |
5858 | 5859.8 | 0.051 | 0.0509 | −0.280 | −0.2804 | |
0.138 | 0.1383 | |||||
0.555 | 0.5571 | |||||
2490 | 2490.9 | 0.097 | 0.0978 | −0.145 | −0.1463 | |
0.160 | 0.1617 | |||||
2700 | 2701.0 | 0.100 | 0.0999 | −0.111 | −0.1111 | |
5826 | 5824.8 | 0.045 | 0.0459 | −0.193 | −0.1951 | |
0.151 | 0.1517 | |||||
6046 | 6046.7 | 0.050 | 0.0505 | −0.164 | −0.1642 | |
3631 | 3632.2 | 0.076 | 0.0766 | −0.034 | −0.0330 | |
0.285 | 0.2852 | |||||
10,197 | 10,197.4 | 0.031 | 0.0309 | −0.128 | −0.1279 | |
0.215 | 0.2140 | |||||
3739 | 3738.7 | 0.073 | 0.0739 | 0.008 | 0.0091 | |
7023 | 7024.2 | 0.043 | 0.0430 | −0.023 | −0.0232 | |
10,271 | 10,271.3 | 0.030 | 0.0304 | −0.083 | −0.0829 | |
4806 | 4807.2 | 0.062 | 0.0619 | 0.124 | 0.1239 | |
8032 | 8030.9 | 0.038 | 0.0378 | 0.089 | 0.0891 | |
11,220 | 11,218.6 | 0.026 | 0.0264 | 0.032 | 0.0318 | |
14,370 | 14,371.8 | 0.019 | 0.0192 | −0.019 | −0.0192 |
Term | NIST | GEM | |
---|---|---|---|
58.311 [52] | 58.31 | ||
59.67378 [53] | 59.66 | ||
63.120 [52] | |||
63.78658 [52] | |||
64.0719 [52] |
Calculation | Pole | RS | Pole | RS |
---|---|---|---|---|
(S) | - | - | ||
(S,F) | (S,S) | |||
(S,S) | - | - | ||
(S,S,F) | (S,S,S) | |||
(S,S,S,F) | (S,S,S,S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, P.G.; Entem, D.R. Coupling Hadron-Hadron Thresholds within a Chiral Quark Model Approach. Symmetry 2021, 13, 279. https://doi.org/10.3390/sym13020279
Ortega PG, Entem DR. Coupling Hadron-Hadron Thresholds within a Chiral Quark Model Approach. Symmetry. 2021; 13(2):279. https://doi.org/10.3390/sym13020279
Chicago/Turabian StyleOrtega, Pablo G., and David R. Entem. 2021. "Coupling Hadron-Hadron Thresholds within a Chiral Quark Model Approach" Symmetry 13, no. 2: 279. https://doi.org/10.3390/sym13020279
APA StyleOrtega, P. G., & Entem, D. R. (2021). Coupling Hadron-Hadron Thresholds within a Chiral Quark Model Approach. Symmetry, 13(2), 279. https://doi.org/10.3390/sym13020279