Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System
Abstract
:1. Introduction
2. Preliminaries
Symmetry Analysis
3. Symmetry Analysis of (2 + 1)-Dimensional Fractional Kadomtsev-Petviashvili System
4. Power Series Solution
5. Analysis of the Convergence
6. Conservation Laws
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbulut, A.; Kaplan, M. Symmetries, Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 2018, 75, 876–882. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H. Symmetries, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 2018, 75, 2031–2043. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, Y.L. Symmetries, Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 2018, 75, 2978–2988. [Google Scholar] [CrossRef]
- Höök, L.J.; Ludvigsson, G.; von Sydow, L. The Kolmogorov forward fractional partial differential equation for the CGMY-process with applications in option pricing. Comput. Math. Appl. 2018, 76, 2330–2344. [Google Scholar] [CrossRef]
- Osman, M.S.; Rezazadeh, H.; Eslami, M. Traveling wave solutions for (3 + 1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 2019, 8, 559–567. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.I.; Osman, M.S. On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math. J. 2013, 53, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, L.; Iyiola, O.S. A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 169, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Senol, M.; Iyiola, O.S.; Kasmaei, H.D.; Akinyemi, L. Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 1, 462. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Samet, B.; Gómez-Aguilar, J.F.; Osman, M.S. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020, 141, 110321. [Google Scholar] [CrossRef]
- Arqub, O.A.; Osman, M.S.; Abdel-Aty, A.H.; Mohamed, A.B.A.; Momani, S. A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics 2020, 8, 923. [Google Scholar] [CrossRef]
- Senol, M. New analytical solutions of fractional symmetric regularized-long-wave equation. Rev. Mex. Fis. 2020, 66, 297–307. [Google Scholar] [CrossRef]
- Kour, B.; Kumar, S. Time fractional Biswas Milovic equation: Group analysis, soliton solutions, conservation laws and residual power series solution. Optik 2019, 183, 1085–1098. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Osman, M.S.; Samet, B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Method Partial Differ. Equ. 2021, 37, 1250–1268. [Google Scholar] [CrossRef]
- Kumar, D.; Kaplan, M.; Haque, M.; Osman, M.S.; Baleanu, D. A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water. Front. Phys. 2020, 8, 177. [Google Scholar] [CrossRef]
- Kour, B.; Kumar, S. Space time fractional Drinfel’d-Sokolov-Wilson system with time-dependent variable coefficients: Symmetry analysis, power series solutions and conservation laws. Eur. Phys. J. Plus 2019, 134, 467. [Google Scholar] [CrossRef]
- Kumari, P.; Gupta, R.K.; Kumar, S. The time fractional D (m, n) system: Invariant analysis, explicit solution, conservation laws and optical soliton. Waves Random Complex Media 2020. [Google Scholar] [CrossRef]
- Feng, L.L.; Tian, S.F.; Wang, X.B.; Zhang, T.T. Lie symmetry analysis, conservation laws and exact power series solutions for time-fractional Fordy-Gibbons equation. Commun. Theor. Phys. 2016, 66, 321–329. [Google Scholar] [CrossRef]
- Zhang, Y. Lie symmetry analysis and exact solutions of general time fractional fifth-order Korteweg-de Vries equation. Int. J. Appl. Math. 2017, 47, 66–74. [Google Scholar]
- Rui, W. Zhang, X. Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation. Commun. Nonlinear Sci. Numer. Simul. 2016, 34, 38–44. [Google Scholar] [CrossRef]
- Sil, S.; Sekhar, T.R.; Zeidan, D. Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. Chaos Soliton Fractals 2020, 139, 110010. [Google Scholar] [CrossRef]
- Du, X.X.; Tian, B.; Qu, Q.X.; Yuan, Y.-Q.; Zhao, X.-H. Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Soliton Fractals 2020, 134, 109709. [Google Scholar] [CrossRef]
- Bansal, A.; Kara, A.H.; Biswas, A.; Khan, S.; Zhou, Q.; Moshokoa, S.P. Optical solitons and conservation laws with polarization-mode dispersion for coupled Fokas-Lenells equation using group invariance. Chaos Soliton Fractals 2019, 120, 245–249. [Google Scholar] [CrossRef]
- Osman, M.S.; Baleanu, D.; Adem, A.R.; Hosseini, K.; Mirzazadeh, M.; Eslami, M. Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations. Chin. J. Phys. 2020, 63, 122–129. [Google Scholar] [CrossRef]
- Kumar, S.; Kour, B. Fractional (3 + 1)-dim Jimbo Miwa system: Invariance properties, exact solutions, solitary pattern solutions and conservation laws. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 843–854. [Google Scholar] [CrossRef]
- Juan, J.D.; Zhang, Y. Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos Soliton Fractals 2020, 138, 109913. [Google Scholar]
- Zayed, E.M.; Alngar, M.E.; Biswas, A.; Asma, M.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. Chaos Solitons Fractals 2020, 139, 110284. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Kour, B.; Kumar, S. Symmetry analysis, explicit power series solutions and conservation laws of space-time fractional variant Boussinesq system. Eur. Phys. J. Plus 2018, 133, 520. [Google Scholar] [CrossRef]
- Ibragimov, N.K.; Avdonina, E.D. Nonlinear self adjointness, conservation laws, and the construction of solutions to partial differential equations using conservation laws. Russ. Math. Surv. 2013, 68, 111–146. [Google Scholar] [CrossRef]
- David, D.; Kamran, N.; Levi, D.; Winternitz, P. Symmetry reduction for the kadomtsev-Petviashvili equation using a loop algebra. J. Math. Phys. 1986, 27, 1225–1237. [Google Scholar] [CrossRef]
- Khan, K.; Ali Akbar, M. Exact traveling wave solutions of Kadomtsev-Petviashvili equation. J. Egypt. Math. Soc. 2015, 23, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 1940, 15, 539–541. [Google Scholar]
- Bouard, A.; Saut, J.C. Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal. 1997, 28, 1064–1085. [Google Scholar] [CrossRef]
- Lou, S.Y. Symmetries of the Kadomtsev-Petviashvili equation. J. Phys. A 1993, 26, 4387–4394. [Google Scholar] [CrossRef]
- Linares, F.; Pilod, D.; Saut, J.C. The Cauchy Problem for the Fractional Kadomtsev-Petviashvili Equations. SIAM J. Math. Anal. 2018, 50, 3172–3209. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Singla, K.; Gupta, R.K. Generalized Lie symmetry approach for fractional order systems of differential equations. J. Math. Phys. 2017, 58, 14. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Gao, B. Symmetry analysis and explicit power series solutions of the Boussinesq-Whitham-Broer-Kaup equation. Waves Random Complex Media 2017, 27, 700–710. [Google Scholar] [CrossRef]
- Rudin, W. Principles of Mathematical Analysis; McGraw-Hill Book Co.: New York, NY, USA, 1964. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Kour, B.; Yao, S.-W.; Inc, M.; Osman, M.S. Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System. Symmetry 2021, 13, 477. https://doi.org/10.3390/sym13030477
Kumar S, Kour B, Yao S-W, Inc M, Osman MS. Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System. Symmetry. 2021; 13(3):477. https://doi.org/10.3390/sym13030477
Chicago/Turabian StyleKumar, Sachin, Baljinder Kour, Shao-Wen Yao, Mustafa Inc, and Mohamed S. Osman. 2021. "Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System" Symmetry 13, no. 3: 477. https://doi.org/10.3390/sym13030477
APA StyleKumar, S., Kour, B., Yao, S. -W., Inc, M., & Osman, M. S. (2021). Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System. Symmetry, 13(3), 477. https://doi.org/10.3390/sym13030477