Quantum Retrodiction: Foundations and Controversies
Abstract
:1. Introduction
2. Predictive and Retrodictive Probabilities
3. Retrodiction in Quantum Theory
4. Retrodictive States and Dynamics
5. Bayesian Inference and Quantum Retrodiction
6. Controversies, Objections and Resolutions
6.1. Reality of the Wavefunction?
6.2. Quantum Theory Applies Only to Ensembles?
6.3. Restriction to Unbiased State Preparation?
6.4. Should There Be a Time-Symmetric Formulation?
7. Retrodiction, Time-Reversal and the Arrow of Time
7.1. Retrodiction Is Not Time-Reversal
7.2. Quantum Arrow of Time?
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Retrodiction for Mixed States and Generalized Measurements
References
- Watanabe, S. Symmetry of Physical Laws. Part III. Prediction and Retrodiction. Rev. Mod. Phys. 1955, 27, 179–186. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time Symmetry in the Quantum process of Measurement. Phys. Rev. 1964, 134, B1410–B1416. [Google Scholar] [CrossRef]
- Belinfante, F.J. Measurement and Time Reversal in Objective Quantum Theory; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Pegg, D.T.; Barnett, S.M. Retrodiction in Quantum Optics. J. Opt. B Quantum Semiclass. Opt. 1999, 1, 442–445. [Google Scholar] [CrossRef]
- Barnett, S.M.; Pegg, D.T.; Jeffers, J. Bayes’ Theorem and Quantum Retrodiction. J. Mod. Opt. 2000, 47, 1779–1789. [Google Scholar] [CrossRef]
- Barnett, S.M. Quantum Retrodiction. In Quantum Information and Coherence; Andersson, E., Öhberg, P., Eds.; Springer: Heidelberg, Germany, 2014; pp. 1–30. [Google Scholar]
- Pegg, D.T.; Phillips, L.S.; Barnett, S.M. Optical State Truncation by Projection Synthesis. Phys. Rev. Lett. 1998, 81, 1604–1606. [Google Scholar] [CrossRef]
- Barnett, S.M.; Phillips, L.S.; Pegg, D.T. Imperfect Photodetection as projection onto mixed states. Opt. Commun. 1998, 158, 45–49. [Google Scholar] [CrossRef]
- Barnett, S.M.; Pegg, D.T.; Jeffers, J.; Jedrkiewicz, O.; Loudon, R. Retrodiction for Quantum Optical Communications. Phys. Rev. A 2000, 62, 022313. [Google Scholar] [CrossRef]
- Barnett, S.M.; Pegg, D.T.; Jeffers, J.; Jedrkiewicz, O. Master Equation for Retrodiction of Quantum Communication Signals. Phys. Rev. Lett. 2001, 86, 2455–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, E.-K.; Jeffers, J.; Barnett, S.M.; Pegg, D.T. Retrodictive States and Two-Photon Quantum Imaging. Eur. Phys. J. D 2003, 22, 495–499, Erratum in 2004, 29, 309. [Google Scholar] [CrossRef] [Green Version]
- Babichev, S.A.; Ries, J.; Lvovsky, A.I. Quantum Scissors: Teleportation of Single-Mode Optical States by means of a Nonlocal Single Photon. Europhys. Lett. 2003, 64, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chefles, A.; Sasaki, M. Retrodiction of Generalised Measurement Outcomes. Phys. Rev. A 2003, 67, 032112. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.-K.; Jeffers, J.; Barnett, S.M. Field State Measurement in a Micromaser using Retrodictve Quantum Theory. Phys. Rev. A 2004, 69, 043806. [Google Scholar] [CrossRef]
- Jedrkiewicz, O.; Jeffers, J.; Loudon, R. Retrodiction for coherent communication with homodyne or heterodyne detection. Eur. Phys. J. D 2006, 39, 129. [Google Scholar] [CrossRef]
- Gammelmark, S.; Julsgaard, B.; Mølmer, K. Past Quantum States of a Monitored System. Phys. Rev. Lett. 2013, 111, 160401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybarczyk, T.; Peaudecerf, B.; Penasa, M.; Gerlich, S.; Julsgaard, B.; Mølmer, K.; Gleyzes, S.; Brune, M.; Raimond, J.M.; Haroche, S.; et al. Forward-backward analysis of the photon-number evolution in a cavity. Phys. Rev. A 2015, 91, 062116. [Google Scholar] [CrossRef]
- Tan, D.; Weber, S.; Siddiqi, I.; Mølmer, K.; Murch, K.W. Prediction and Retrodiction for a Continuously Monitored Superconducting Qubit. Phys. Rev. Lett. 2015, 114, 090403. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Foroozani, N.; Naghiloo, M.; Kiilerich, A.H.; Mølmer, K.; Murch, K.W. Homodyne monitoring of postselected decay. Phys. Rev. A 2017, 96, 022104. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Duan, J.; Lu, X.; Li, P.; Qu, W.; Jin, S.; Wang, M.; Novikova, I.; Mikhailov, E.; Zhao, K.-F.; et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 2020, 581, 159–163. [Google Scholar] [CrossRef]
- Bao, H.; Jin, S.; Duan, J.; Jia, S.; Mølmer, K.; Shen, H.; Xiao, Y. Retrodiction beyond the Heisenberg uncertainty relation. Nat. Commun. 2020, 11, 5658. [Google Scholar] [CrossRef]
- Zhang, C.; Mølmer, K. Estimating a fluctuating magnetic field with a continuously monitored atomic ensemble. Phys. Rev. A 2020, 102, 063716. [Google Scholar] [CrossRef]
- Sonnleitner, M.; Jeffers, J.; Barnett, S.M. Image retrodiction at low light levels. Optica 2015, 2, 950–957. [Google Scholar] [CrossRef]
- Di Biagio, A.; Donà, P.; Rovelli, C. Quantum Information and the Arrow of Time. arXiv 2020, arXiv:2010.05734. [Google Scholar]
- Peres, A. Time asymmetry in quantum mechanics: A retrodiction paradox. Phys. Lett. A 1994, 194, 21–25. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers; Oliver and Bond: Edinburgh, UK, 1928. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Physics; Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Jeffreys, H. Theory of Probability; Oxford University Press: Oxford, UK, 1939. [Google Scholar]
- McGrayne, S.B. The Theory That Would Not Die; Yale University Press: New Haven, CT, USA, 2011. [Google Scholar]
- Bretthorts, G.L. Bayesian Spectrum Analysis and Parameter Estimation; Springer: New York, NY, USA, 1988. [Google Scholar]
- Jaynes, E.T. Papers on Probability, Statistics and Statistical Physics; Kluwer Academic Publishers: Dordrecht, Germany, 1989. [Google Scholar]
- Lee, P.M. Bayesian Statistics: An Introduction; Edward Arnold: London, UK, 1989. [Google Scholar]
- Box, G.E.P.; Tiao, G.C. Bayesian Inference in Statistical Analysis; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Sivia, D.S. Data Analysis: A Bayesian Tutorial; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Dover: Mineola, NY, USA, 1968. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Goldie, C.M.; Pinch, R.G.E. Communication Theory; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Barnett, S.M. Quantum Information; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Cornish, N.J.; Littenberg, T.B. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quantum Gravity 2015, 32, 135012. [Google Scholar] [CrossRef]
- Veitch, J.; Raymond, V.; Farr, B.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.; Del Pozzo, W.; et al. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave observations using LALInference Software Library. Phys. Rev. D 2015, 91, 042003. [Google Scholar] [CrossRef] [Green Version]
- Littenberg, T.B.; Cornish, N.J. Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise. Phys. Rev. D 2015, 91, 084034. [Google Scholar] [CrossRef] [Green Version]
- Ashton, G.; Hübner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divarkala, A.; Easter, P.J.; Goncharov, B.; et al. Bilby: A User-Friendly Bayesian Inference Library for Gravitational-Wave Astronomy. arXiv 2018, arXiv:1811.02042v1. [Google Scholar] [CrossRef] [Green Version]
- Thrane, E.; Talbot, C. An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: Parameter Estimation, Model Selection, and Hierarchical Models. arXiv 2020, arXiv:1809:02293v8. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R. Feynman’s Thesis; World Scientific: Singapore, 2005. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; Dover: New York, NY, USA, 2010. [Google Scholar]
- Amri, T.; Laurat, J.; Fabre, C. Characterizing Quantum Properties of a Measurement: Insights from the Retrodictive Approach. Phys. Rev. Lett. 2011, 106, 020502. [Google Scholar] [CrossRef] [Green Version]
- Kocher, C.A.; Commins, E.D. Polarization Correlation of Photons Emitted in an Atomic Cascade. Phys. Rev. Lett. 1967, 18, 575–577. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.A.; Feynman, R.P. Interaction with the Absorber as the Mechanism of Radiation. Rev. Mod. Phys. 1945, 17, 157–181. [Google Scholar] [CrossRef]
- Pegg, D.T. Time-symmetric Electrodynamics and the Kocher-Commins Experiment. Eur. J. Phys. 1982, 3, 44–49. [Google Scholar] [CrossRef]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; McGraw-Hill Kogakusha: Tokyo, Japan, 1968; p. 24. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; p. 13. [Google Scholar]
- Schrödinger, E. Are There Quantum Jumps? Part II. Br. J. Philos. Sci. 1952, 3, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Haroche, S.; Raimond, J.-M. Exploring the Quantum; Oxford University Press: Oxford UK, 2006. [Google Scholar]
- Haroche, S. Controlling Photons in a Box and Exploring the Quantum to Classical Boundary: Nobel Lecture, 8 December 2012. Available online: https://www.nobelprize.org/uploads/2018/06/haroche-lecture.pdf (accessed on 30 March 2021).
- Wineland, D.J. Superposition, Entanglement, and Raising Schrödinger’s Cat: Nobel Lecture, 8 December 2012. Available online: https://www.nobelprize.org/uploads/2018/06/wineland-lecture.pdf (accessed on 30 March 2021).
- Carmichael, H. An Open Systems Approach to Quantum Optics; Springer: Berlin, Germany, 1993. [Google Scholar]
- Dalibard, J.; Castin, Y.; Mølmer, K. Wave-Function Approach to Dissipative Processes in Quantum Optics. Phys. Rev. Lett. 1992, 68, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percival, I. Quantum State Diffusion; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Plenio, M.B.; Knight, P.L. The Quantum Jump Approach to Dissipative Dynamics in Quantum Optics. Rev. Mod. Phys. 1998, 70, 101–144. [Google Scholar] [CrossRef] [Green Version]
- van Dorsselaer, F.E.; Nienhuis, G. Quantum Trajectories. J. Opt. B Quantum Semiclass. Opt. 2000, 2, R25–R33. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Gleason, A.M. Measures on the Close Subspaces of a Hilbert Space. J. Math. Mech. 1957, 6, 885–893. [Google Scholar]
- Busch, P. Quantum States and Generalized Observables: A Simple Proof of Gleason’s Theorem. Phys. Rev. Lett. 2003, 91, 120403. [Google Scholar] [CrossRef] [Green Version]
- Barnett, S.M.; Cresser, J.D.; Jeffers, J.; Pegg, D.T. Quantum Probability Rule: A Generalization of the Theorems of Gleason and Busch. New. J. Phys. 2014, 16, 043025. [Google Scholar] [CrossRef] [Green Version]
- Fields, D.; Sajia, A.; Bergou, J.A. Quantum Retrodiction made Fully Symmetric. arXiv 2020, arXiv:2006.15692. [Google Scholar]
- Barnett, S.M.; Croke, S. Quantum State Discrimination. Adv. Opt. Photonics 2009, 1, 238–278. [Google Scholar] [CrossRef]
- Wigner, E.P. Group Theory; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Bigi, I.I.; Sanda, A.I. CP Violation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Mazo, R.M. Brownian Motion; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Lemons, D.S. An Introduction to Stochastic Processes in Physics; Johns Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Bohm, D. Quantum Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1951. [Google Scholar]
- Everett, H., III. “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Zeh, H.D. The Physical Basis of the Direction of Time; Springer: Heidelberg, Germany, 2007. [Google Scholar]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified Dynamics for Microscpic and Macroscopic Systems. Phys. Rev. D 1986, 34, 470–491. [Google Scholar] [CrossRef]
- Pegg, D.T. Causality in Quantum Mechanics. Phys. Lett. A 2006, 349, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, J.A.; Griffith University, Brisbane, Australia. Private communication, 2021.
- Vaccaro, J.A. Quantum Asymmetry between Time and Space. Proc. R. Soc. A 2016, 472, 2015670. [Google Scholar] [CrossRef]
- Vaccaro, J.A. The Quantum Theory of Time, the Block Universe and Human Experience. Philos. Trans. R. Soc. A 2018, 376, 20170316. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnett, S.M.; Jeffers, J.; Pegg, D.T. Quantum Retrodiction: Foundations and Controversies. Symmetry 2021, 13, 586. https://doi.org/10.3390/sym13040586
Barnett SM, Jeffers J, Pegg DT. Quantum Retrodiction: Foundations and Controversies. Symmetry. 2021; 13(4):586. https://doi.org/10.3390/sym13040586
Chicago/Turabian StyleBarnett, Stephen M., John Jeffers, and David T. Pegg. 2021. "Quantum Retrodiction: Foundations and Controversies" Symmetry 13, no. 4: 586. https://doi.org/10.3390/sym13040586
APA StyleBarnett, S. M., Jeffers, J., & Pegg, D. T. (2021). Quantum Retrodiction: Foundations and Controversies. Symmetry, 13(4), 586. https://doi.org/10.3390/sym13040586