Next Article in Journal
Biomechanical Symmetry during Drop Jump Landing and Takeoff in Adolescent Athletes Following Recent Anterior Cruciate Ligament Reconstruction
Previous Article in Journal
Semi-Exponential Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A General Fixed Point Theorem for Mappings Satisfying a Cyclical Contractive Condition in S-Metric Spaces

by
Alina-Mihaela Patriciu
1,*,† and
Valeriu Popa
2,†
1
Department of Mathematics and Computer Sciences, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi, Romania
2
Department of Mathematics and Informatics, Faculty of Sciences, “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti, 600115 Bacău, Romania
*
Author to whom correspondence should be addressed.
The authors contributed equally to this work.
Symmetry 2021, 13(4), 638; https://doi.org/10.3390/sym13040638
Submission received: 13 March 2021 / Revised: 7 April 2021 / Accepted: 9 April 2021 / Published: 10 April 2021
(This article belongs to the Section Mathematics)

Abstract

:
In this paper we introduce a new type of implicit relation in S-metric spaces. Our aim is to prove a general fixed point theorem for mappings satisfying the cyclical contractive condition, which extends several results from the literature.

1. Introduction

Banach’s contraction principle [1] was extended to a case of cyclical mappings by Kirk et al. [2].
Many fundamental metrical fixed point theorems are extended to cyclic contractive mappings in [3], and other results are presented in [4,5,6,7,8,9] and in other papers.
A new class of generalized metric space, named D-metric spaces, is introduced in [10,11], by Dhage.
It has been shown, by Mustafa and Sims [12,13], that most of the statements about fundamental topological structures on D-metric spaces are incorrect. Thus, the authors introduced the appropriate notion of generalized metrics space, called G-metric space. In fact, Mustafa, Sims and other authors obtained numerous fixed point results for self mappings in G-metric spaces. Fixed points for cyclical contractive mappings in G-metric spaces are stated in [14,15,16] and in other papers.
Recently, in [17], the authors introduced a new type of generalized metric spaces, named S-metric spaces, as a “generalization” of G-metric spaces.
In [18], the authors proved that the notion of S-metric space is not a generalization of G-metric space or vice versa. Hence, the notions of G-metric space and S-metric space are independent.
The study of cyclical contractive mapping in S-metric spaces is introduced in [19].
By considering a general condition given by an implicit relation, various classical (common) fixed point theorems in metric spaces have been unified into [20,21]. In [22,23] begins the study of fixed points for mappings that satisfy an implicit relation in G-metric spaces.
The study of cyclical implicit contractive conditions is initiated in [24] and in G-metric spaces in [25].
The study of fixed points for mappings satisfying implicit relation in S-metric spaces is initiated in [26,27].
The purpose of this paper is to prove, using a new type of implicit relation, one general fixed point theorem for mappings which satisfy a cyclical contractive condition, thus extending some results from [26,28,29,30,31].

2. Preliminaries

Definition 1
([17,26]). Let X be a nonempty set. An S-metric on X is a function S : X 3 R + such that:
( S 1 ) :
S x , y , z = 0 if and only if x = y = z ;
( S 2 ) :
S x , y , z S x , x , a + S y , y , a + S z , z , a for all x , y , z , a X .
The pair X , S is called an S-metric space.
Example 1.
Let X = R and S x , y , z = x z + y z . Then, S x , y , z is an S-metric on R , which is named the usual S - metric on X.
Lemma 1
( [17]). If S is an S-metric on a nonempty set X, then
S x , x , y   =   S y , y , x for all x , y X .
Definition 2.
Let X , S be a S-metric space. For r > 0 and x X we define the open ball with center in x and radius r, the set
B S x , r   =   y X : S x , x , y < r .
The topology induced by the S-metric is the topology determined by the base of all open balls in X.
Definition 3.
(a) 
A sequence x n in X , S is convergent to x, denoted lim n x n = x or x n x , if S x n , x n , x 0 as n .
(b) 
A sequence x n in X , S is a Cauchy sequence if S x n , x n , x m 0 as n , m .
(c) 
X , S is complete if every Cauchy sequence is convergent.
Example 2.
X , S from Example 1 is complete.
Lemma 2
([17,26]). Let X , S be a S - metric space. If x n x and y n y , then S x n , x n , y n S x , x , y .
Lemma 3
([17,26]). Let X , S be a S - metric space and x n x . Then lim n x n is unique.
Lemma 4
([19]). Let X , S be a S-metric space and A is a nonempty subset of X. If A is S-closed, then for all convergent sequence x n to x, x A .
Definition 4
([2]). Let X , d be a metric space. Let p > 1 , p N be, T a self mapping on X and A i i = 1 p nonempty closed subsets of X. The mapping T is said to be cyclical if
T A i A i + 1 , i = 1 , 2 , , p , w h e r e A p + 1 = A 1 .
The following theorems are proved in [3,29].
Theorem 1
([3]). Let A i i = 1 p be nonempty closed subsets of a complete metric space X , d and f : i = 1 p A i i = 1 p A i satisfying (1) such that
d f x , f y     α max d x , y , d x , f x , d y , f y , d y , f x , d x , f y
for all x A i , y A i + 1 , i = 1 , 2 , , p and some α 0 , 1 2 . Then f has a unique fixed point in i = 1 p A i .
Theorem 2
([29]). Let X , d be a complete metric space, p N , A i i = 1 p a finite family of nonempty closed subsets of X and T : i = 1 p A i i = 1 p A i satisfying (1) and
d T x , T y     k max d x , y , d x , T x , d y , T y , d x , T y + d y , T x 2 ,
where k 0 , 1 , for all x A i , y A i + 1 , i = 1 , 2 , , p . Then T has a unique fixed point in i = 1 p A i .

3. S -Implicit Relations

Let F S be the set of all lower semi-continuous functions F : R + 6 R satisfying the following conditions:
F 1 :
F is nondecreasing in t 6 ;
F 2 :
there exists h 0 , 1 such that for all u , v 0 , F u , v , v , u , 0 , 2 u + v     0 implies u h v ;
F 3 :
F t , t , 0 , 0 , t , t > 0 , t > 0 .
Example 3.
F t 1 , , t 6 = t 1 a t 2 b max t 3 , t 4 , t 5 , t 6 , where a , b 0 and a + 3 b < 1 .
F 1 :
obvious.
F 2 :
Let u , v 0 and F u , v , v , u , 0 , 2 u + v = u a v b max u , v , 2 u + v 0 . If u > v , then u 1 a + 3 b 0 , a contradiction. Hence, u v , which implies u h v , where 0 h = a + 3 b < 1 .
F 3 :
F t , t , 0 , 0 , t , t = t 1 a + 3 b > 0 , t > 0 .
In the following examples, since the proofs are similar, we will omit them.
Example 4.
F t 1 , , t 6   =   t 1 a t 2 b t 3 c t 4 d max t 5 , t 6 , where a , b , c , d 0 and a + b + c + 3 d < 1 .
Example 5.
F t 1 , , t 6   =   t 1 a t 2 d max t 3 , t 4 b t 5 c t 6 , where a , b , c , d 0 , a + 3 c + d < 1 and a + b + c < 1 .
Example 6.
F t 1 , , t 6   =   t 1 a t 2 b t 3 e t 4 c t 5 d t 6 f max t 2 , t 3 , t 4 , t 5 , t 6 , where a , b , c , d , e , f 0 , a + b + e + 3 d + 3 f < 1 and a + d + c + f < 1 .
Example 7.
F t 1 , , t 6   =   t 1 a t 5 + t 6 b t 2 c max t 3 , t 4 , where a , b , c 0 and 3 a + b + c < 1 .
Example 8.
F t 1 , , t 6   =   t 1 a t 3 + t 4 b t 2 c max t 5 , t 6 , where a , b , c 0 and 2 a + b + 3 c < 1 .
Example 9.
F t 1 , , t 6   =   t 1 a max t 4 + t 5 , t 3 + t 6 b t 2 , where a , b 0 and 4 a + b < 1 .
Example 10.
F t 1 , , t 6   =   t 1 2 t 1 a t 2 + b t 3 + c t 4 d t 5 t 6 , where a , b , c 0 , a + b + c < 1 and a + d < 1 .
Example 11.
F t 1 , , t 6   =   t 1 2 a t 1 t 2 b t 3 t 4 c t 5 t 6 , where a , b , c 0 , a + b < 1 and a + c < 1 .
Example 12.
F t 1 , , t 6   =   t 1 3 a t 1 t 2 t 3 b t 2 t 3 t 4 c t 3 t 4 t 5 d t 4 t 5 t 6 , where a , b , c 0 and a + b < 1 .
Example 13.
F t 1 , , t 6   =   t 1 a t 2 b t 3 c t 4 d t 5 e t 6 , where a , b , c , d , e 0 , a + b + c + 3 e < 1 and a + d + e < 1 .
Example 14.
F t 1 , , t 6   =   t 1 k max t 2 , t 3 , t 4 , t 5 , t 6 , where k 0 , 1 3 .
Example 15.
F t 1 , , t 6   =   t 1 k max t 2 , t 3 , t 4 , t 5 + t 6 3 , where k     0 , 1 .
Remark 1.
Examples 10–12 are not of the type of the examples from [18].

4. Main Result

Theorem 3.
Let X , S be a complete S-metric space and A i i = 1 p be a family of nonempty closed subsets of X. Let Y = i = 1 p A i and let T : Y Y satisfying
T A i A i + 1 , i = 1 , 2 , , p ,
where A p + 1 = A 1 .
If the inequality
F S T x , T y , T y , S x , y , y , S x , T x , T x , S y , T y , T y , S y , T x , T x , S x , T y , T y 0
holds for all x A i , y A i + 1 , i = 1 , 2 , , p and F F S , then T has a unique fixed point in i = 1 p A i .
Proof. 
Let x 0 be an arbitrary point of A 1 . We define x n = T x n 1 , n = 1 , 2 , . By (5) for x 0 A 1 and x 1 A 2 , x p 1 = T x p 2 A p , x p = T x p 1 A p + 1 = A 1 , x p + 1 = T x p A 2 , we have
F S T x 0 , T x 1 , T x 1 , S x 0 , x 1 , x 1 , S x 0 , T x 0 , T x 0 , S x 1 , T x 1 , T x 1 , S x 1 , T x 0 , T x 0 , S x 0 , T x 1 , T x 1 0 ,
F S x 1 , x 2 , x 2 , S x 0 , x 1 , x 1 , S x 0 , x 1 , x 1 , S x 1 , x 2 , x 2 , 0 , S x 0 , x 2 , x 2 0 .
By S 2 and Lemma 1 we have
S x 0 , x 2 , x 2 = S x 2 , x 2 , x 0 2 S x 2 , x 2 , x 1 + S x 0 , x 0 , x 1 = 2 S x 1 , x 2 , x 2 + S x 0 , x 1 , x 1 .
By (6) and F 1 we obtain
F S x 1 , x 2 , x 2 , S x 0 , x 1 , x 1 , S x 0 , x 1 , x 1 , S x 1 , x 2 , x 2 , 0 , 2 S x 1 , x 2 , x 2 + S x 0 , x 1 , x 1 0 .
By F 2 we obtain
S x 1 , x 2 , x 2 h S x 0 , x 1 , x 1 .
Similarly, we obtain
S x p 2 , x p 1 , x p 1 h S x p 3 , x p 2 , x p 2 .
Again, we get
S x p 1 , x p , x p h S x p 2 , x p 1 , x p 1 .
Hence, we have
S x n , x n + 1 , x n + 1     h S x n 1 , x n , x n     h n S x 0 , x 1 , x 1 .
Using S 2 it follows that x n is a Cauchy sequence in X. Since X , S is complete, it follows that x n is convergent to a point z. Then, the sequence
x n p + 1 A 1 , x n p + 2 A 2 , . . . , x n p + p A p , n = 0 , 1 , 2 , . . .
also converges to z and z i = 1 p A i , because by Lemma 4, z A i , i = 1 , 2 , , p .
We have to prove that z is a fixed point of T.
For x = x n and y = z , by (5) we obtain
F S T x n , T z , T z , S x n , z , z , S x n , T x n , T x n , S z , T z , T z , S z , T x n , T x n , S x n , T z , T z 0 ,
F S x n + 1 , T z , T z , S x n , z , z , S x n , x n + 1 , x n + 1 , S z , T z , T z , S z , x n + 1 , x n + 1 , S x n , T z , T z 0 .
Letting n tend to infinity, by Lemma 2 we obtain
F S z , T z , T z , 0 , 0 , S z , T z , T z , 0 , S z , T z , T z 0 .
By F 1 we get
F S z , z , T z , 0 , 0 , S z , z , T z , 0 , 2 S z , T z , T z 0 .
By F 2 we obtain S z , T z , T z   =   0 and by S 1 it follows that z = T z . Hence, z is a fixed point and z i = 1 p A i .
Suppose that there exists another fixed point z i = 1 p A i . By (5) for x = z and y = z we obtain
F S T z , T z , T z , S z , z , z , S z , T z , T z , S z , T z , T z , S z , T z , T z , S z , T z , T z 0 ,
F S z , z , z , S z , z , z , 0 , 0 , S z , z , z , S z , z , z     0 .
By Lemma 1, S z , z , z   =   S z , z , z . Hence,
F S z , z , z , S z , z , z , 0 , 0 , S z , z , z , S z , z , z     0 ,
a contradiction of F 3 if S z , z , z > 0 . Hence, S z , z , z   =   0 and by S 1 , z = z . Hence, z is the unique fixed point of T and z i = 1 p A i . □

5. Final Remarks

In this paper, using a new type of implicit relation, we have proved a general fixed point theorem for mappings that satisfy a cyclical contractive condition. Our result extends certain results from [26,28,29,30,31]:
(i)
Theorem 3 and Example 3 extend Corollary 2.21 [26] to cyclical form;
(ii)
Theorem 3 and Examples 3–9 extend Theorem 3.1 [28] to cyclical form;
(iii)
Theorem 3 and Example 15 extend Theorem 2 to cyclical form in S-metric spaces;
(iv)
Theorem 3 and Example 13 extend Corollary 2.19 [26], Theorems 2.3 and 2.4 [30], Theorems 3.2–3.4 [31] to cyclical form.

Author Contributions

Both authors contributed equally and significantly in writing this article. Both authors have read and agreed to the published version of the manuscript.

Funding

The APC was funded by “Dunărea de Jos" University of Galaţi, Romania.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the editor and the anonymous referees for their valuable comments and suggestions regarding the initial version of our article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4, 79–85. [Google Scholar]
  3. Petric, M.A. Some remarks concerning cyclical contractive mappings. Gen. Math. 2010, 18, 213–226. [Google Scholar]
  4. Javaheri, A.; Sedghi, S.; Hyun, H.G. Common fixed point theorems for two mappings in S-metric spaces. Nonlinear Funct. Anal. Appl. 2019, 24, 417–425. [Google Scholar]
  5. Păcurar, M. Fixed point theory for cyclic Berinde operators. Fixed Point Theory 2011, 12, 419–428. [Google Scholar]
  6. Păcurar, M.; Rus, I.A. Fixed point theory for cyclic ϕ-contractions. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 2010, 72, 1181–1187. [Google Scholar] [CrossRef]
  7. Rus, I.A. Cyclical representation of fixed points. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 2005, 3, 171–178. [Google Scholar]
  8. Saluja, B.G.S.; Kim, J.K.; Lim, W.H. Common fixed point theorems under generalized (ψ,ϕ)-weak contractions in S metric spaces with applications. Nonlinear Funct. Anal. Appl. 2019, 26, 13–33. [Google Scholar]
  9. Shatanawi, W.; Postolache, M. Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 2013, 60. [Google Scholar] [CrossRef] [Green Version]
  10. Dhage, B.C. Generalized metric space and mappings with fixed point. Bull. Calcutta Math. Soc. 1992, 84, 329–336. [Google Scholar]
  11. Dhage, B.C. Generalized metric space and topological structures I. An. Ştiinţ. Univ. Al I Cuza Iaşi Mat. 2000, 46, 3–24. [Google Scholar]
  12. Mustafa, Z.; Sims, B. Some remarks concerning D-metric spaces. In Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia, Spain, 13–19 July 2003; pp. 189–198. [Google Scholar]
  13. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 280–297. [Google Scholar]
  14. Bilgili, N.; Karapinar, E. Cyclic contractions via auxiliary functions on G-metric spaces. Fixed Point Theory Appl. 2013, 2013, 49. [Google Scholar] [CrossRef] [Green Version]
  15. Karapinar, E.; Yldiz-Ulus, A.; Erhan, I.M. Cyclic contractions on G-metric spaces. Abstr. Appl. Anal. 2012, 182947. [Google Scholar] [CrossRef]
  16. Nashine, H.K.; Golubović, Z.; Kadelburg, Z. Nonlinear cyclic weak contractions in G-metric spaces and applications to boundary valued problems. Fixed Point Theory Appl. 2012, 2012, 227. [Google Scholar] [CrossRef] [Green Version]
  17. Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
  18. Dung, N.V.; Hieu, N.T.; Radojević, S. Fixed point theorems for g-monotone maps on partially ordered S-metric spaces. Filomat 2014, 28, 1885–1898. [Google Scholar]
  19. Gupta, A. Cyclic contractions on S-metric spaces. Int. J. Anal. Appl. 2013, 3, 119–130. [Google Scholar]
  20. Popa, V. Fixed point theorems for implicit contractive mappings. Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău 1997, 7, 129–133. [Google Scholar]
  21. Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math. 1999, 32, 157–163. [Google Scholar] [CrossRef]
  22. Popa, V. A general fixed point theorem for several mappings in G-metric spaces. Sci. Stud. Res. Ser. Math. Inform. 2011, 21, 205–214. [Google Scholar]
  23. Popa, V.; Patriciu, A.-M. A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces. J. Nonlinear Sci. Appl. 2012, 5, 151–160. [Google Scholar] [CrossRef]
  24. Nashine, H.K.; Kadelburg, Z.; Kumam, P. Implicit relation type cyclic contractive mappings and applications to boundary integral equation. Abstr. Appl. Anal. 2012, 2012, 386253. [Google Scholar] [CrossRef] [Green Version]
  25. Popa, V.; Patriciu, A.-M. A general fixed point theorem for mappings satisfying a cyclical contractive condition in G-metric spaces. Sci. Stud. Res. Ser. Math. Inform. 2015, 25, 63–76. [Google Scholar]
  26. Sedghi, S.; Dung, N.V. Fixed point theorems on S-metric spaces. Mat. Vesn. 2014, 66, 113–124. [Google Scholar]
  27. Sedghi, S.; Altun, I.; Shobe, N.; Salahshour, M.A. Some properties of S-metric spaces and fixed point results. Kyungpook Math. J. 2014, 54, 113–122. [Google Scholar] [CrossRef]
  28. Özgür, N.Y.; Taş, N. Some generalizations on fixed point theorems on S-metric spaces. In Essays in Mathematics and its Applications; Rassias, T., Pardalos, P., Eds.; Springer: Cham, Switzerland, 2016; pp. 229–261. [Google Scholar]
  29. Petric, M.A. Fixed Points and Best Proximity Points for Cyclical Contractive Operators. Ph.D. Thesis, North University of Baia Mare, Baia Mare, Romania, 2011. [Google Scholar]
  30. Prudhvi, K. Fixed point results in S-metric spaces. Univ. J. Comput. Math. 2015, 3, 19–21. [Google Scholar] [CrossRef]
  31. Prudhvi, K. Some fixed point results in S-metric spaces. J. Math. Sci. Appl. 2016, 4, 1–3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Patriciu, A.-M.; Popa, V. A General Fixed Point Theorem for Mappings Satisfying a Cyclical Contractive Condition in S-Metric Spaces. Symmetry 2021, 13, 638. https://doi.org/10.3390/sym13040638

AMA Style

Patriciu A-M, Popa V. A General Fixed Point Theorem for Mappings Satisfying a Cyclical Contractive Condition in S-Metric Spaces. Symmetry. 2021; 13(4):638. https://doi.org/10.3390/sym13040638

Chicago/Turabian Style

Patriciu, Alina-Mihaela, and Valeriu Popa. 2021. "A General Fixed Point Theorem for Mappings Satisfying a Cyclical Contractive Condition in S-Metric Spaces" Symmetry 13, no. 4: 638. https://doi.org/10.3390/sym13040638

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop