Bayesian Testing Procedure on the Lifetime Performance Index of Products Following Chen Lifetime Distribution Based on the Progressive Type-II Censored Sample
Abstract
:1. Introduction
2. The Monotonic Relationship between the Lifetime Performance Index and the Conforming Rate
3. Results
3.1. UMVUE for the Lifetime Performance Index and the Testing Procedure
3.2. Bayesian Estimator for the Lifetime Performance Index and the Testing Procedure
3.3. Simulation Study on Two Procedures
- Both credible intervals have average confidence levels very close to the nominal ones. Thus, the performance of both credible intervals is very satisfactory even for a small sample size n = 20 or larger sample size n = 30,100.
- The SMSEs for both credible intervals are about the same and very small in the scope of 0.000433 to 0.000523.
- The SMSEs for both credible intervals are decreasing when m is increasing for fixed n.
- The risk for the Bayesian estimator is smaller than the one for UMVUE. The discrepancy between the two estimators is decreasing when m is increasing for fixed n. The parameter (a,b) = (2,2) always has the smallest risk for both estimators. Generally speaking, the Bayesian estimator outperforms the UMVUE in terms of risk.
3.4. Example
4. Discussion
5. Conclusions
5.1. Summary
5.2. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
0.000000 | −0.125 | 0.324652 | 0.550 | 0.637628 | |
−3.000 | 0.018316 | 0.000 | 0.367879 | 0.575 | 0.653770 |
−2.750 | 0.023518 | 0.125 | 0.416862 | 0.600 | 0.670320 |
−2.500 | 0.030197 | 0.150 | 0.427415 | 0.625 | 0.687289 |
−2.250 | 0.038774 | 0.175 | 0.438235 | 0.650 | 0.704688 |
−2.125 | 0.043937 | 0.200 | 0.449329 | 0.675 | 0.722527 |
−2.000 | 0.049787 | 0.225 | 0.460704 | 0.700 | 0.740818 |
−1.750 | 0.063928 | 0.250 | 0.472367 | 0.725 | 0.759572 |
−1.500 | 0.082085 | 0.275 | 0.484325 | 0.750 | 0.778801 |
−1.250 | 0.105399 | 0.300 | 0.496585 | 0.775 | 0.798516 |
−1.125 | 0.119433 | 0.325 | 0.509156 | 0.800 | 0.818731 |
−1.000 | 0.135335 | 0.350 | 0.522046 | 0.825 | 0.839457 |
−0.750 | 0.173774 | 0.375 | 0.535261 | 0.850 | 0.860708 |
−0.500 | 0.223130 | 0.400 | 0.548812 | 0.875 | 0.882497 |
−0.250 | 0.286505 | 0.425 | 0.562705 | 0.900 | 0.904837 |
−0.225 | 0.293758 | 0.450 | 0.576950 | 0.925 | 0.927743 |
−0.200 | 0.301194 | 0.475 | 0.591555 | 0.950 | 0.951229 |
−0.175 | 0.308819 | 0.500 | 0.606531 | 0.975 | 0.975310 |
−0.15 | 0.316637 | 0.525 | 0.621885 | 1.000 | 1.000000 |
(a,b) = (2,2) | (a,b) = (2,5) | (a,b) = (5,2) | ||||||
---|---|---|---|---|---|---|---|---|
n | m | UMVUE | Bayes | UMVUE | Bayes | UMVUE | Bayes | |
20 | 10 | 0.95046 | 0.95049 | 0.95062 | 0.95039 | 0.95025 | 0.95018 | |
(0.000459) | (0.000454) | (0.000485) | (0.000466) | (0.000439) | (0.00046) | |||
(0.032338) | (0.020448) | (0.206719) | (0.129118) | (0.166737) | (0.082863) | |||
0.94954 | 0.94965 | 0.94927 | 0.94990 | 0.94871 | 0.94895 | |||
(0.000458) | (0.000475) | (0.000478) | (0.000491) | (0.000493) | (0.000496) | |||
(0.033270) | (0.020028) | (0.202740) | (0.126668) | (0.172086) | (0.083376) | |||
0.94997 | 0.94944 | 0.94962 | 0.94882 | 0.95002 | 0.94905 | |||
(0.000479) | (0.000513) | (0.000476) | (0.000490) | (0.000458) | (0.000464) | |||
(0.033348) | (0.020464) | (0.210638) | (0.129526) | (0.167786) | (0.083427) | |||
15 | 0.94989 | 0.95060 | 0.95011 | 0.94988 | 0.94956 | 0.94983 | ||
(0.000435) | (0.000442) | (0.000435) | (0.000452) | (0.000471) | (0.000501) | |||
(0.019462) | (0.014550) | (0.128238) | (0.092888) | (0.101481) | (0.063165) | |||
0.95047 | 0.95079 | 0.95005 | 0.95018 | 0.94850 | 0.94915 | |||
(0.000481) | (0.000465) | (0.000473) | (0.000457) | (0.000510) | (0.000511) | |||
(0.020197) | (0.014692) | (0.127588) | (0.091372) | (0.103466) | (0.063199) | |||
0.94974 | 0.95031 | 0.95007 | 0.94971 | 0.94926 | 0.94936 | |||
(0.000439) | (0.000463) | (0.000509) | (0.000516) | (0.000488) | (0.000507) | |||
(0.020154) | (0.014541) | (0.130222) | (0.093632) | (0.100478) | (0.062896) | |||
30 | 15 | 0.95063 | 0.95028 | 0.95007 | 0.95010 | 0.95138 | 0.94991 | |
(0.000501) | (0.000488) | (0.000488) | (0.000531) | (0.000468) | (0.000457) | |||
(0.020698) | (0.014852) | (0.125239) | (0.092391) | (0.103473) | (0.063256) | |||
0.94924 | 0.94998 | 0.95129 | 0.95087 | 0.94943 | 0.94928 | |||
(0.000467) | (0.000472) | (0.000447) | (0.000459) | (0.000475) | (0.000488) | |||
(0.020231) | (0.014722) | (0.128099) | (0.092867) | (0.102906) | (0.063306) | |||
0.94985 | 0.95003 | 0.95074 | 0.94997 | 0.95084 | 0.95019 | |||
(0.000464) | (0.000454) | (0.000475) | (0.000464) | (0.000483) | (0.000480) | |||
(0.020609) | (0.014676) | (0.126370) | (0.093766) | (0.103612) | (0.063977) | |||
20 | 0.94953 | 0.94969 | 0.95032 | 0.95063 | 0.94956 | 0.95000 | ||
(0.000484) | (0.000483) | (0.000474) | (0.000454) | (0.000472) | (0.000475) | |||
(0.014779) | (0.011676) | (0.089691) | (0.071110) | (0.074365) | (0.051170) | |||
0.95019 | 0.94991 | 0.95013 | 0.94941 | 0.94926 | 0.94932 | |||
(0.000491) | (0.000517) | (0.000050) | (0.000502) | (0.000434) | (0.000481) | |||
(0.014722) | (0.011651) | (0.093602) | (0.072828) | (0.074644) | (0.051560) | |||
0.94885 | 0.94927 | 0.95023 | 0.95008 | 0.95031 | 0.95006 | |||
(0.000503) | (0.000523) | (0.000484) | (0.000491) | (0.000457) | (0.000451) | |||
(0.014757) | (0.011515) | (0.090619) | (0.072060) | (0.073405) | (0.051221) | |||
100 | 20 | 0.94984 | 0.94966 | 0.94989 | 0.94950 | 0.95015 | 0.95040 | |
(0.000491) | (0.000487) | (0.000508) | (0.000506) | (0.000492) | (0.000499) | |||
(0.014944) | (0.011491) | (0.093359) | (0.072604) | (0.073616) | (0.051114) | |||
0.94895 | 0.94883 | 0.94985 | 0.95042 | 0.94994 | 0.94926 | |||
(0.000449) | (0.000475) | (0.000466) | (0.000489) | (0.000465) | (0.000471) | |||
(0.014812) | (0.011674) | (0.08942) | (0.071394) | (0.074201) | (0.051082) | |||
0.95057 | 0.95005 | 0.95010 | 0.94935 | 0.95048 | 0.94950 | |||
(0.000458) | (0.000463) | (0.000439) | (0.000444) | (0.000446) | (0.000485) | |||
(0.014641) | (0.011405) | (0.093107) | (0.071695) | (0.073540) | (0.051245) |
References
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Tong, L.I.; Chen, K.S.; Chen, H.T. Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution. Int. J. Qual. Reliab. Manag. 2002, 19, 812–824. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring. Applications to Reliability and Quality; Birkhäuser: Basel, Switzerland, 2014. [Google Scholar]
- Aggarwala, R. Progressive interval censoring: Some mathematical results with applications to inference. Commun. Stat. Theory Methods 2001, 30, 1921–1935. [Google Scholar] [CrossRef]
- Wu, S.F. Interval estimation for the two-parameter exponential distribution under progressive censoring. Qual. Quant. 2010, 44, 181–189. [Google Scholar] [CrossRef]
- Wu, S.F.; Wu, C.C.; Lin, H.M. The Exact Hypothesis Test for the Shape Parameter of a New Two-Parameter Distribution with the Bathtub Shape or Increasing Failure Rate function under Progressive Censoring with Random Removals. J. Stat. Comput. Simul. 2009, 79, 1015–1042. [Google Scholar] [CrossRef]
- Wu, S.F. The performance assessment on the lifetime performance index of products following Chen lifetime distribution based on the progressive type I interval censored sample. J. Comput. Appl. Math. 2018, 334, 27–38. [Google Scholar] [CrossRef]
- Wu, S.F.; Chang, W.T. The evaluation on the process capability index CL for exponentiated Frech’et lifetime product under progressive type I interval censoring. Symmetry 2021, 13, 1032. [Google Scholar] [CrossRef]
- Wu, S.F.; Hsieh, Y.T. The assessment on the lifetime performance index of products with Gompertz distribution based on the progressive type I interval censored sample. J. Comput. Appl. Math. 2019, 351, 66–76. [Google Scholar] [CrossRef]
- Laumen, B.; Cramer, E. Inference for the lifetime performance index with progressively Type-II censored samples from gamma distributions. Econ. Qual. Control 2015, 30, 59–73. [Google Scholar] [CrossRef]
- Lee, W.C.; Wu, J.W.; Hong, C.W. Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples. J. Comput. Appl. Math. 2009, 231, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.W.; Lee, W.C.; Lin, L.S.; Hong, M.L. Bayesian test of lifetime performance index for exponential products based on the progressively type II right censored sample. J. Quant. Manag. 2011, 8, 57–77. [Google Scholar]
- Lee, W.C.; Wu, J.W.; Hong, C.W. Assessing the lifetime performance index of products from progressively type II right censored data using Burr XII model. Math. Comput. Simul. 2009, 79, 2167–2179. [Google Scholar] [CrossRef]
- Wu, J.W.; Lee, W.C.; Hong, C.W.; Yeh, S.Y. Implementing Lifetime Performance Index of Burr XII Products with Progressively Type II Right Censored Sample. Int. J. Innov. Comput. Inf. Control 2014, 10, 671–693. [Google Scholar]
- Lee, W.C. Assessing the lifetime performance index of Rayleigh products based on the bayesian estimation under progressive type II right censored samples. J. Comput. Appl. Math. 2011, 235, 1676–1688. [Google Scholar] [CrossRef]
- Chen, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probab. Lett. 2000, 49, 155–161. [Google Scholar] [CrossRef]
- Domma, F.; Condino, F. A new class of distribution functions for lifetime data. Reliab. Eng. Syst. Saf. 2014, 129, 36–45. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Waller, R.A.; Johnson, M.M.; Waterman, M.S.; Martz, H.F. Gamma prior distribution selection for Bayesian analysis of failure rate and reliability. In Nuclear Systems Reliability Engineering and Risk Assessment; Fussell, J.B., Burdick, G.R., Eds.; SIAM: Philadelphia, PA, USA, 1977; pp. 584–606. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 2002. [Google Scholar]
- Xie, M.; Lai, C.D. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 1995, 52, 87–93. [Google Scholar] [CrossRef]
- Gill, M.H.; Gastwirth, J.L. A scale-free goodness-of-fit Test for the Exponential Distribution Based on the Gini Statistic. J. R. Stat. Soc. 1978, 40, 350–357. [Google Scholar] [CrossRef]
- Lehmann, E.L.; Scheffe, H. Completeness, Similar Regions and Unbiased Estimates. Sankhya 1950, 10, 305–340. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-F.; Chang, W.-T. Bayesian Testing Procedure on the Lifetime Performance Index of Products Following Chen Lifetime Distribution Based on the Progressive Type-II Censored Sample. Symmetry 2021, 13, 1322. https://doi.org/10.3390/sym13081322
Wu S-F, Chang W-T. Bayesian Testing Procedure on the Lifetime Performance Index of Products Following Chen Lifetime Distribution Based on the Progressive Type-II Censored Sample. Symmetry. 2021; 13(8):1322. https://doi.org/10.3390/sym13081322
Chicago/Turabian StyleWu, Shu-Fei, and Wei-Tsung Chang. 2021. "Bayesian Testing Procedure on the Lifetime Performance Index of Products Following Chen Lifetime Distribution Based on the Progressive Type-II Censored Sample" Symmetry 13, no. 8: 1322. https://doi.org/10.3390/sym13081322