Approximate Solutions of an Extended Multi-Order Boundary Value Problem by Implementing Two Numerical Algorithms
Abstract
:1. Introduction
2. Basic Concepts
- ,
- ,
- .
- .
3. Results of the Existence Criterion
- () There exist real constants such that
- () There exist two real constants such that
- () Let
4. Approximation of Solutions via DGJIM and ADM Methods
4.1. DGJIM Numerical Method
4.2. ADM Numerical Method
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastassiou, G.A.; Argyros, I.K.; Kumar, S. Monotone convergence of extended iterative methods and fractional calculus with applications. Fundam. Inform. 2017, 151, 241–253. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Jajarmi, A.; Hajipour, M.; Baleanu, D. New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos Solitons Fractals 2017, 99, 285–296. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Hajipour, M. A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 2017, 175, 718–737. [Google Scholar] [CrossRef]
- Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 2020, 55. [Google Scholar] [CrossRef]
- Hajipour, M.; Jajarmi, A.; Baleanu, D. An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 2017, 13, 021013. [Google Scholar] [CrossRef]
- Dokuyucu, M.A.; Celik, E.; Bulut, H.; Baskonus, H.M. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 92. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Kosmatov, N.; Jiang, W. Resonant functional problems of fractional order. Chaos Solitons Fractals 2016, 91, 573–579. [Google Scholar] [CrossRef]
- Lu, C.; Fu, C.; Yang, H. Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 2018, 327, 104–116. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractal 2020, 135, 109867. [Google Scholar] [CrossRef] [PubMed]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Etemad, S.; Mohammadi, H. A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals. Adv. Differ. Equ. 2020, 2020, 481. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 2020, 71. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Mohammadi, H.; Jajarmi, A. A new mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, 2020, 589. [Google Scholar] [CrossRef]
- Khan, S.A.; Shah, K.; Zaman, G.; Jarad, F. Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013128. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a new structure of the pantograph inclusion problem in the Caputo conformable setting. Bound. Value Probl. 2020, 2020, 171. [Google Scholar] [CrossRef]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Afshari, H.; Kalantari, S.; Karapinar, E. Solution of fractional differential equations via coupled fixed point. Electron. J. Diff. Equ. 2015, 286, 1–12. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Salem, S.; Ntouyas, S.K. Fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions. Fractal Fract. 2019, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Agarwal, R.P. A study of nonlocal integro-multi-point boundary value problems of sequential fractional integro-differential inclusions. Dyn. Contin. Disc. Impuls. Syst. Ser. A Math. Anal. 2018, 25, 125–140. [Google Scholar]
- Baitiche, Z.; Derbazi, C.; Benchohra, M. ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 2020, 3, 167–178. [Google Scholar]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ. 2020, 2020, 276. [Google Scholar] [CrossRef]
- Boucenna, D.; Boulfoul, A.; Chidouh, A.; Ben Makhlouf, A.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021. [Google Scholar] [CrossRef]
- Boulfoul, A.; Tellab, B.; Abdellouahab, N.; Zennir, K. Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Si Bachir, F.; Abbas, S.; Benbachir, M.; Benchohra, M. Hilfer-Hadamard fractional differential equations; Existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 49–57. [Google Scholar]
- Chen, Y.M.; Han, X.N.; Liu, L.C. Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis. Comput. Model. Eng. Sci. 2014, 97, 391–405. [Google Scholar]
- Jong, K.; Choi, H.; Jang, K.; Pak, S. A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. Appl. Num. Math. 2021, 160, 313–330. [Google Scholar] [CrossRef]
- Saeed, U. CAS Picard method for fractional nonlinear differential equation. Appl. Math. Comput. 2017, 307, 102–112. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 2018, 91, 307–317. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.M.; Liu, L.Q.; Li, B.F.; Sun, Y.N. Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 2014, 238, 329–341. [Google Scholar] [CrossRef]
- Sakar, M.G.; Akgul, A.; Baleanu, D. On solutions of fractional Riccati differential equations. Adv. Differ. Equ. 2017, 2017, 39. [Google Scholar] [CrossRef]
- Yin, F.; Song, J.; Wu, Y.; Zhang, L. Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstr. Appl. Anal. 2013, 13, 562140. [Google Scholar] [CrossRef] [Green Version]
- Odibat, Z.M.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2016, 7, 7–34. [Google Scholar] [CrossRef]
- Bolandtalat, A.; Babolian, E.; Jafari, H. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials. Open Phys. 2016, 14, 226–230. [Google Scholar] [CrossRef]
- Hesameddini, E.; Rahimi, A.; Asadollahifard, E. On the convergence of a new reliable algorithm for solving multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2016, 34, 154–164. [Google Scholar] [CrossRef]
- Firoozjaee, M.A.; Yousefi, S.A.; Jafari, H.; Baleanu, D. On a numerical approach to solve multi order fractional differential equations with boundary initial conditions. J. Comput. Nonlinear Dynam. 2015, 10, 061025. [Google Scholar] [CrossRef]
- Dabiri, A.; Butcher, E.A. Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn. 2017, 90, 185–201. [Google Scholar] [CrossRef]
- Ali, A.; Sarwar, M.; Zada, M.B.; Shah, K. Existence of solutions to fractional differential equation with fractional integral type boundary conditions. Math. Methods Appl. Sci. 2021, 44, 1615–1627. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Dai, Q.; Liu, J. Existence and uniqueness results for nonlocal integral boundary value problems for fractional differential equations. Adv. Differ. Equ. 2016, 2016, 122. [Google Scholar] [CrossRef] [Green Version]
- Padhi, S.; Graef, J.R.; Pati, S. Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 2018, 21, 716–745. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496–519. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Adomian decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2005, 301, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Babolian, E.; Vahidi, A.R.; Shoja, A. An efficient method for nonlinear fractional differential equations: Combination of the Adomian decomposition method and spectral method. Indian J. Pure Appl. Math. 2014, 45, 1017–1028. [Google Scholar] [CrossRef]
- Khodabakhshi, N.; Vaezpour, S.M.; Baleanu, D. Numerical solutions of the initial value problem for fractional differential equations by modification of the Adomian decomposition method. Fract. Calc. Appl. Anal. 2014, 17, 382–400. [Google Scholar] [CrossRef]
- Loghmani, G.B.; Javanmardi, S. Numerical methods for sequential fractional differential equations for Caputo operator. Bull. Malays. Math. Sci. Soc. 2012, 35, 315–323. [Google Scholar]
- Granas, A.; Dugundji, J. Elementary Fixed Point Theorems. In Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitho, S.; Etemad, S.; Tellab, B.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Approximate Solutions of an Extended Multi-Order Boundary Value Problem by Implementing Two Numerical Algorithms. Symmetry 2021, 13, 1341. https://doi.org/10.3390/sym13081341
Sitho S, Etemad S, Tellab B, Rezapour S, Ntouyas SK, Tariboon J. Approximate Solutions of an Extended Multi-Order Boundary Value Problem by Implementing Two Numerical Algorithms. Symmetry. 2021; 13(8):1341. https://doi.org/10.3390/sym13081341
Chicago/Turabian StyleSitho, Surang, Sina Etemad, Brahim Tellab, Shahram Rezapour, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "Approximate Solutions of an Extended Multi-Order Boundary Value Problem by Implementing Two Numerical Algorithms" Symmetry 13, no. 8: 1341. https://doi.org/10.3390/sym13081341
APA StyleSitho, S., Etemad, S., Tellab, B., Rezapour, S., Ntouyas, S. K., & Tariboon, J. (2021). Approximate Solutions of an Extended Multi-Order Boundary Value Problem by Implementing Two Numerical Algorithms. Symmetry, 13(8), 1341. https://doi.org/10.3390/sym13081341