Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design, Tasks, and Procedures
2.2.1. Jumping
2.2.2. Hip and Trunk Strength
2.2.3. Hip and Trunk Range of Motion
2.2.4. Change of Direction
2.3. Statistical Analyses
3. Results
4. Discussion
Limitations and Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, C.; Gonzalo-Skok, O.; Read, P. Inter-limb Asymmetry during Rehabilitation: Understanding Formulas and Monitoring the Magnitude and Direction. Aspetar Sport. Med. J. 2020, 9, 18–22. [Google Scholar]
- Jordan, M.J.; Aagaard, P.; Herzog, W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand. J. Med. Sci. Sports 2015, 25, e301–e309. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Menzel, H.-J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.S.; de Andrade, A.G.P.; de Jesus-Moraleida, F.R. Analysis of Lower Limb Asymmetries by Isokinetic and Vertical Jump Tests in Soccer Players. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef]
- Bailey, C.; Sato, K.; Alexander, R.; Chiang, C.-Y.; Stone, M.H. Isometric force production symmetry and jumping performance in collegiate athletes. J. Trainol. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Lake, J.; Loturco, I.; Dawes, J.; Madruga, M.; Romero-Rodrigues, D.; Chavda, S.; Turner, A. Unilateral Isometric Squat: Test Reliability, Interlimb Asymmetries, and Relationships with Limb Dominance. J. Strength Cond. Res. 2019, 35, S144–S151. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Turner, A. Using Unilateral Strength, Power and Reactive Strength Tests to Detect the Magnitude and Direction of Asymmetry: A Test-Retest Design. Sports 2019, 7, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Bromley, T.; Brazier, J.; Jarvis, P.; Chavda, S.; Turner, A. The Association between Interlimb Asymmetry and Athletic Performance Tasks: A Season-Long Study in Elite Academy Soccer Players. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hewit, J.K.; Cronin, J.B.; Hume, P.A. Asymmetry in multi-directional jumping tasks. Phys. Ther. Sport 2012, 13, 238–242. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Maloney, S.; Lake, J.; Loturco, I.; Bromley, T.; Read, P. Drop Jump Asymmetry is Associated with Reduced Sprint and Change-of-Direction Speed Performance in Adult Female Soccer Players. Sports 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Rodríguez, A.; Fernández-García, J.C.; Chinchilla-Minguet, J.L.; Carnero, E.Á. Relationship between muscular strength and sprints with changes of direction. J. Strength Cond. Res. 2012, 26, 725–732. [Google Scholar] [CrossRef]
- Rouissi, M.; Chtara, M.; Owen, A.; Burnett, A.; Chamari, K. Change of direction ability in young elite soccer players: Determining factors vary with angle variation. J. Sports Med. Phys. Fit. 2017, 57, 960–968. [Google Scholar]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Brazier, J.; Bromley, T.; Turner, A. Magnitude or Direction? Seasonal Variation of Interlimb Asymmetry in Elite Academy Soccer Players. J. Strength Cond. Res. 2020, 1–22. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.C.; Rosseti, M.; Carpes, F.P.; Bishop, C. Do asymmetry scores influence speed and power performance in elite female soccer players? Biol. Sport 2019, 36, 209–216. [Google Scholar] [CrossRef]
- Trecroci, A.; Bongiovanni, T.; Cavaggioni, L.; Pasta, G.; Formenti, D.; Alberti, G. Agreement between dribble and change of direction deficits to assess directional asymmetry in young elite football players. Symmetry 2020, 12, 787. [Google Scholar] [CrossRef]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Komatsu, W.; Cunha, R.; Arliani, G.; Ejnisman, B.; Pochini, A.D.C.; Nakamura, F.Y.; et al. Functional Screening Tests: Interrelationships and Ability to Predict Vertical Jump Performance. Int. J. Sports Med. 2018, 39, 189–197. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raya-González, J.; Bishop, C.; Gómez-Piqueras, P.; Veiga, S.; Viejo-Romero, D.; Navandar, A. Strength, Jumping, and Change of Direction Speed Asymmetries Are Not Associated with Athletic Performance in Elite Academy Soccer Players. Front. Psychol. 2020, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in Isometric Force-Time Characteristics Are Not Detrimental to Change of Direction Speed. J. Strength Cond. Res. 2018, 32, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Šarabon, N. Inter-Limb Asymmetries in Volleyball Players: Differences between Testing Approaches and Association with Performance. J. Sports Sci. Med. 2020, 19, 745–752. [Google Scholar]
- Madruga-Parera, M.; Bishop, C.; Read, P.; Lake, J.; Brazier, J.; Romero-Rodriguez, D. Jumping-based Asymmetries are Negatively Associated with Jump, Change of Direction, and Repeated Sprint Performance, but not Linear Speed, in Adolescent Handball Athletes. J. Hum. Kinet. 2020, 71, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the magnitude and direction of asymmetry during the squat, countermovement and drop jump tests in elite youth female soccer players. J. Sports Sci. 2020, 38, 1296–1303. [Google Scholar] [CrossRef]
- Pardos-Mainer, E.; Bishop, C.; Gonzalo-Skok, O.; Nobari, H.; Pérez-Gómez, J.; Lozano, D. Associations between Inter-Limb Asymmetries in Jump and Change of Direction Speed Tests and Physical Performance in Adolescent Female Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 3474. [Google Scholar] [CrossRef]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Deklerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Markovic, G.; Sarabon, N.; Greblo, Z.; Krizanic, V. Effects of feedback-based balance and core resistance training vs. Pilates training on balance and muscle function in older women: A randomized-controlled trial. Arch. Gerontol. Geriatr. 2015, 61, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Marušič, J.; Marković, G.; Šarabon, N. Reliability of a New Portable Dynamometer for Assessing Hip and Lower Limb strength. Appl. Sci. 2021, 11, 3391. [Google Scholar] [CrossRef]
- Rouissi, M.; Chtara, M.; Owen, A.; Chaalali, A.; Chaouachi, A.; Gabbett, T.; Chamari, K. Effect of leg dominance on change of direction ability amongst young elite soccer players. J. Sports Sci. 2016, 34, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Inter-limb Asymmetries: Understanding How to Calculate Differences from Bilateral and Unilateral Tests. Strength Cond. J. 2018, 40, 1. [Google Scholar] [CrossRef] [Green Version]
- Mobahi, H. Computing Kappa Index. Available online: https://www.mathworks.com/matlabcentral/fileexchange/22645-computing-kappa-index (accessed on 8 February 2020).
- Sim, J.; Wright, C.C. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Burgi, C.R.; Peters, S.; Ardern, C.L.; Magill, J.R.; Gomez, C.D.; Sylvain, J.; Reiman, M.P. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br. J. Sports Med. 2019, 53, 1154–1161. [Google Scholar] [CrossRef]
- Struminger, A.H.; Lewek, M.D.; Goto, S.; Hibberd, E.; Blackburn, J.T. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises. Clin. Biomech. 2013, 28, 783–789. [Google Scholar] [CrossRef]
- Dos’Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical Comparison of Cutting Techniques. Strength Cond. J. 2019, 41, 40–54. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Marković, G.; Hadžić, V.; Šarabon, N. Relationship between force-velocity-power profiles and inter-limb asymmetries obtained during unilateral vertical jumping and singe-joint isokinetic tasks. J. Sports Sci. 2021, 39, 248–258. [Google Scholar] [CrossRef] [PubMed]
Outcome Measure/Task | (Mean ± SD) | CV (%) (CI 95%) | ICC (CI 95%) | (Mean ± SD) | CV (%) (CI 95%) | ICC (CI 95%) | Asymmetry Index (%) |
---|---|---|---|---|---|---|---|
Left | Right | ||||||
SLCMJH (m) | 0.17 ± 0.04 | 13.0 (12.1–14) | 0.84 (0.74–0.92) | 0.17 ± 0.04 | 16.9 (15.1–18.8) | 0.82 (0.74–0.90) | 11.1 ± 8.3 |
SLCMJF (N/kg) | 212.57 ± 17.31 | 3.9 (3.7–4.2) | 0.93 (0.90–0.96) | 210.32 ± 16.97 | 3.8 (3.6–4) | 0.95 (0.92–0.98) | 4.8 ± 4.4 |
SLCMJP (W/kg) | 33.31 ± 4.71 | 7.5 (7–8.1) | 0.98 (0.97–0.99) | 33.43 ± 5.11 | 8 (7.3–8.6) | 0.99 (0.99–1.00) | 7.1 ± 6.8 |
SLHJ (m) | 183.65 ± 18.12 | 4.6 (4.2–4.9) | 0.96 (0.94–0.98) | 181.55 ± 15.50 | 4.3 (4.1–4.5) | 0.96 (0.95–0.98) | 4.6 ± 3.2 |
SLLJ (m) | 174.07 ± 19.74 | 5.1 (4.8–5.3) | 0.94 (0.90–0.98) | 167.81 ± 18.09 | 3.7 (3.4–3.9) | 0.96 (0.92–0.98) | 4.8 ± 3.7 |
SLTJ (m) | 580.56 ± 52 | 3.3 (3.1–3.5) | 0.95 (0.92–0.97) | 575.53 ± 49.47 | 3.6 (3.4–3.8) | 0.95 (0.91–0.97) | 3.5 ± 2.7 |
CoD90° (s) | 2.26 ± 0.13 | 2.4 (2.3–2.6) | 0.91 (0.88–0.93) | 2.27 ± 0.15 | 2.9 (2.7–3) | 0.91 (0.88–0.94) | 3.8 ± 2.6 |
CoD135° (s) | 2.53 ± 0.12 | 3 (2.8–3.1) | 0.87 (0.82–0.92) | 2.49 ± 0.16 | 2.7 (2.6–2.9) | 0.90 (0.86–0.94) | 2.9 ± 3.2 |
CoD180° (s) | 2.67 ± 0.15 | 2.6 (2.4–2.7) | 0.91 (0.88–0.94) | 2.64 ± 0.15 | 2.9 (2.7–3.1) | 0.92 (0.88–0.96) | 3.0 ± 2.9 |
Hip ABDPT (Nm/kg) | 2.13 ± 0.31 | 4.5 (4.2–4.8) | 0.97 (0.96–0.98) | 2.15 ± 0.33 | 4.4 (4.1–4.7) | 0.95 (0.93–0.97) | 3.7 ± 3.1 |
Hip ABDRTD100 (%MVC/s) | 621.29 ± 266.09 | 51.6 (48.9–54.2) | 0.61 (0.51–0.69) | 633.2 ± 279.6 | 49.7 (46.9–52.4) | 0.66 (0.59–0.72) | 11.2 ± 9.7 |
Hip ADDPT (Nm/kg) | 2.04 ± 0.45 | 4.4 (4.1–4.7) | 0.94 (0.93–0.96) | 2.06 ± 0.45 | 4.6 (4.4–4.9) | 0.95 (0.93–0.96) | 5.6 ± 4.8 |
Hip ADDRTD100 (%MVC/s) | 559.68 ± 324.03 | 47 (44.6–49.5) | 0.62 (0.53–0.70) | 608.26 ± 344.69 | 47.5 (45.1–49.8) | 0.69 (0.59–0.79) | 10.7 ± 10.3 |
Hip EXROTPT (Nm/kg) | 0.92 ± 0.29 | 6.2 (5.8–6.5) | 0.96 (0.95–0.97) | 0.94 ± 0.31 | 6.3 (5.9–6.8) | 0.93 (0.92–0.94) | 7.9 ± 5.8 |
Hip EXROTRTD100 (%MVC/s) | 266.01 ± 140.77 | 39.2 (37.1–41.3) | 0.71 (0.64–0.77) | 264 ± 137.53 | 40.6 (38.4–42.8) | 0.75 (0.65–0.85) | 13.2 ± 8.8 |
Hip INROTPT (Nm/kg) | 1.04 ± 0.41 | 5.8 (5.5–6.2) | 0.94 (0.92–0.95) | 1.11 ± 0.41 | 5.2 (4.9–5.6) | 0.94 (0.92–0.95) | 11.5 ± 7.2 |
Hip INROTRTD100 (%MVC/s) | 284.21 ± 176.43 | 41.6 (39.5–43.6) | 0.61 (0.52–0.69) | 293.65 ± 188.44 | 40.7 (38.7–42.7) | 0.58 (0.52–0.63) | 13.2 ± 9.6 |
Hip EXTPT (Nm/kg) | 2.69 ± 0.83 | 5.9 (5.5–6.3) | 0.94 (0.93–0.96) | 2.78 ± 0.71 | 6.6 (6–7.2) | 0.91 (0.88–0.95) | 11.0 ± 8.9 |
Hip EXTRTD100 (%MVC/s) | 708.18 ± 455.34 | 52 (49.1–54.9) | 0.65 (0.56–0.72) | 659.87 ± 486.29 | 46.7 (44.7–48.6) | 0.63 (0.58–0.68) | 30.6 ± 21.8 |
Hip FLEXPT (Nm/kg) | 2.04 ± 0.41 | 5.7 (5.3–6) | 0.95 (0.93–0.96) | 2.14 ± 0.38 | 4.7 (4.5–5) | 0.92 (0.90–0.94) | 9.9 ± 8.4 |
Hip FLEXRTD100 (%MVC/s) | 585.04 ± 327.21 | 53.5 (50.6–56.4) | 0.76 (0.69–0.82) | 562.74 ± 414.39 | 51.7 (49.6–53.8) | 0.79 (0.73–0.85) | 40.3 ± 20.4 |
Trunk LATFLEXPT (Nm/kg) | 3.47 ± 1.17 | 9.2 (8.6–9.8) | 0.97 (0.96–0.98) | 3.58 ± 1.1 | 9.5 (8.9–10.1) | 0.93 (0.90–0.96) | 12.8 ± 9.6 |
Trunk LATFLEXROM (cm) | 24.13 ± 3.04 | 3.1 (2.8–3.4) | 0.61 (0.51–0.69) | 24.03 ± 3.28 | 3.1 (2.9–3.4) | 0.67 (0.59–0.75) | 9.0 ± 5.9 |
Hip ABDROM (°) | 45.46 ± 6.17 | 5 (4.7–5.2) | 0.85 (0.75–0.92) | 43.48 ± 6.43 | 4.4 (4.1–4.6) | 0.89 (0.84–0.93) | 8.9 ± 5.7 |
Hip ADDROM (°) | 26.3 ± 4.38 | 7.2 (6.8–7.5) | 0.81 (0.70–91) | 27.93 ± 3.92 | 7.3 (6.9–7.7) | 0.77 (0.65–88) | 8.8 ± 6.7 |
Hip FLEXROM (°) | 105.61 ± 15.7 | 2.8 (2.6–2.9) | 0.96 (0.93–0.98) | 103.43 ± 16.29 | 2.5 (2.4–2.6) | 0.96 (0.94–0.98) | 5.9 ± 6.2 |
Hip EXTROM (°) | 25.91 ± 5.21 | 6.9 (6.5–7.2) | 0.93 (0.88–0.95) | 25.64 ± 6.22 | 7.8 (7.3–8.3) | 0.94 (0.89–0.97) | 12.8 ± 11.0 |
Hip EXROTROM (°) | 49.2 ± 7.88 | 4.3 (4.1–4.4) | 0.92 (0.86–0.95) | 47.58 ± 8.77 | 3.9 (3.7–4.1) | 0.95 (0.91–0.97) | 11.2 ± 7.3 |
Hip INROTROM (°) | 41.59 ± 7.33 | 4.5 (4.2–5.2) | 0.92 (0.88–0.95) | 42.22 ± 7.78 | 6.2 (5.6–6.8) | 0.89 (0.76–0.95) | 13.5 ± 10.6 |
Asymmetry | SLHJ | SLLJ | SLTJ | SLCMJH | SLCMJF | SLCMJP | |
---|---|---|---|---|---|---|---|
Trunk LATFLEXPT | ρ | −0.14 | −0.28 | 0.06 | 0.04 | 0.02 | 0.31 * |
κ | -0.01 | 0.13 | 0.17 | 0.13 | −0.03 | 0.05 | |
Hip ABDPT | ρ | 0.09 | 0.19 | 0.21 | 0.58 ** | 0.17 | 0.50 ** |
κ | 0.05 | 0.05 | 0.05 | 0.19 | 0.05 | 0.10 | |
Hip ABDRTD100 | ρ | 0.24 | 0.13 | 0.14 | 0.30 | 0.22 | 0.20 |
κ | 0.09 | 0.07 | −0.01 | 0.14 | 0.28 | 0.05 | |
Hip ADDPT | ρ | 0.31 * | −0.14 | −0.07 | 0.27 | 0.30 | 0.14 |
κ | 0.16 | −0.05 | 0.17 | 0.27 | 0.17 | 0.10 | |
Hip ADDRTD100 | ρ | 0.17 | −0.12 | 0.28 | −0.19 | 0.06 | −0.03 |
κ | 0.00 | −0.23 | 0.06 | 0.03 | 0.13 | 0.12 | |
Hip EXROTPT | ρ | 0.09 | −0.24 | 0.08 | 0.24 | 0.21 | 0.20 |
κ | 0.03 | 0.06 | 0.11 | 0.21 | 0.01 | 0.09 | |
Hip EXROTRTD100 | ρ | 0.07 | −0.07 | −0.07 | 0.09 | 0.15 | 0.24 |
κ | 0.33 * | 0.10 | 0.13 | 0.11 | 0.13 | 0.19 | |
Hip INROTPT | ρ | 0.16 | −0.01 | 0.13 | 0.23 | 0.11 | 0.13 |
κ | 0.41 * | 0.30 * | 0.08 | 0.24 | 0.28 | 0.08 | |
Hip INROTRTD100 | ρ | 0.05 | −0.09 | 0.03 | −0.16 | −0.20 | 0.01 |
κ | 0.10 | 0.02 | 0.10 | 0.04 | 0.09 | 0.24 | |
Hip EXTPT | ρ | −0.10 | −0.06 | −0.15 | 0.01 | 0.09 | 0.07 |
κ | 0.17 | 0.19 | 0.20 | 0.24 | −0.03 | 0.11 | |
Hip EXTRTD100 | ρ | −0.03 | −0.27 | −0.09 | 0.02 | 0.19 | 0.27 |
κ | 0.22 | 0.06 | 0.11 | −0.03 | 0.17 | 0.01 | |
Hip FLEXPT | ρ | 0.06 | −0.06 | 0.25 | −0.27 | −0.38 * | −0.31 * |
κ | −0.01 | 0.15 | −0.03 | 0.32 * | 0.17 | 0.04 | |
Hip FLEXRTD100 | ρ | −0.22 | −0.15 | −0.37 * | −0.08 | −0.22 | −0.04 |
κ | 0.15 | 0.18 | 0.03 | −0.01 | 0.22 | 0.00 | |
Hip ABDROM | ρ | −0.18 | −0.06 | 0.03 | −0.18 | −0.04 | −0.12 |
κ | 0.21 | 0.10 | 0.13 | 0.11 | 0.13 | 0.15 | |
Hip ADDROM | ρ | 0.08 | 0.15 | −0.03 | −0.11 | −0.19 | −0.18 |
κ | 0.23 | −0.21 | 0.18 | −0.03 | −0.11 | 0.02 | |
Hip EXROTROM | ρ | −0.03 | 0.05 | −0.01 | 0.26 | −0.01 | 0.00 |
κ | 0.16 | −0.08 | 0.34 * | 0.20 | 0.15 | 0.16 | |
Hip INROTROM | ρ | 0.08 | 0.19 | 0.12 | −0.02 | −0.14 | −0.28 |
κ | 0.35 * | 0.13 | 0.01 | 0.12 | 0.21 | 0.18 | |
Hip EXTROM | ρ | 0.17 | 0.00 | −0.08 | 0.03 | −0.05 | 0.12 |
κ | 0.14 | 0.14 | 0.14 | 0.19 | 0.24 | 0.29 | |
Hip FLEXROM | ρ | 0.15 | 0.05 | 0.43 ** | 0.37 * | 0.24 | 0.41 ** |
κ | 0.06 | 0.10 | 0.03 | 0.11 | 0.13 | 0.09 | |
Trunk LATFLEXROM | ρ | 0.06 | −0.06 | 0.01 | 0.17 | 0.04 | 0.07 |
κ | 0.11 | 0.13 | 0.12 | 0.07 | 0.17 | 0.04 |
Asymmetry | CoD90° | CoD135° | CoD180° | |
---|---|---|---|---|
Trunk LATFLEXPT | ρ | −0.08 | 0.12 | −0.03 |
κ | 0.34 * | 0.00 | 0.05 | |
Hip ABDPT | ρ | −0.05 | 0.29 | −0.01 |
κ | 0.00 | 0.24 | 0.10 | |
Hip ABDRTD100 | ρ | −0.12 | 0.19 | 0.02 |
κ | 0.05 | 0.10 | 0.14 | |
Hip ADDPT | ρ | 0.03 | 0.07 | −0.14 |
κ | 0.01 | 0.05 | 0.01 | |
Hip ADDRTD100 | ρ | 0.18 | 0.08 | 0.05 |
κ | 0.17 | 0.24 | 0.17 | |
Hip EXROTPT | ρ | −0.03 | −0.13 | 0.08 |
κ | 0.01 | 0.05 | 0.01 | |
Hip EXROTRTD100 | ρ | 0.15 | 0.02 | −0.05 |
κ | 0.19 | 0.24 | 0.09 | |
Hip INROTPT | ρ | 0.06 | −0.19 | 0.10 |
κ | 0.08 | 0.05 | 0.02 | |
Hip INROTRTD100 | ρ | 0.06 | 0.04 | 0.04 |
κ | 0.05 | 0.19 | 0.14 | |
Hip EXTPT | ρ | −0.14 | −0.16 | −0.08 |
κ | 0.08 | 0.14 | 0.11 | |
Hip EXTRTD100 | ρ | −0.37 * | 0.10 | −0.13 |
κ | −0.01 | 0.24 | 0.09 | |
Hip FLEXPT | ρ | −0.08 | −0.37 * | 0.15 |
κ | 0.15 | 0.00 | 0.33* | |
Hip FLEXRTD100 | ρ | −0.14 | −0.12 | −0.07 |
κ | 0.00 | 0.33 * | 0.19 | |
Hip ABDROM | ρ | −0.48 ** | −0.04 | 0.12 |
κ | 0.04 | 0.10 | 0.06 | |
Hip ADDROM | ρ | 0.05 | 0.02 | −0.05 |
κ | 0.12 | 0.10 | 0.12 | |
Hip EXROTROM | ρ | 0.13 | 0.04 | −0.01 |
κ | 0.06 | 0.00 | 0.13 | |
Hip INROTROM | ρ | 0.16 | 0.12 | 0.01 |
κ | 0.01 | 0.24 | 0.28 | |
Hip EXTROM | ρ | 0.06 | −0.12 | 0.13 |
κ | 0.19 | 0.05 | 0.10 | |
Hip FLEXROM | ρ | 0.09 | 0.39 * | 0.12 |
κ | 0.10 | 0.05 | 0.28 | |
Trunk LATFLEXROM | ρ | 0.02 | 0.23 | −0.05 |
κ | 0.14 | 0.10 | 0.23 |
Asymmetry | CoD90° | CoD135° | CoD180° | |
---|---|---|---|---|
SLHJ | ρ | 0.12 | 0.03 | −0.07 |
κ | 0.00 | 0.05 | 0.19 | |
SLLJ | ρ | 0.29 | 0.04 | 0.14 |
κ | 0.17 | 0.05 | −0.02 | |
SLTJ | ρ | 0.10 | 0.18 | 0.38 * |
κ | 0.20 | 0.05 | −0.01 | |
SLCMJH | ρ | −0.09 | 0.12 | 0.01 |
κ | 0.24 | 0.29 | 0.05 | |
SLCMJF | ρ | −0.18 | 0.34 * | 0.19 |
κ | 0.28 | 0.14 | −0.01 | |
SLCMJP | ρ | −0.28 | 0.26 | 0.03 |
κ | 0.33 * | 0.38 * | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujaković, F.; Šarabon, N. Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players. Symmetry 2021, 13, 1436. https://doi.org/10.3390/sym13081436
Ujaković F, Šarabon N. Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players. Symmetry. 2021; 13(8):1436. https://doi.org/10.3390/sym13081436
Chicago/Turabian StyleUjaković, Filip, and Nejc Šarabon. 2021. "Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players" Symmetry 13, no. 8: 1436. https://doi.org/10.3390/sym13081436
APA StyleUjaković, F., & Šarabon, N. (2021). Relationship between Asymmetries Measured on Different Levels in Elite Basketball Players. Symmetry, 13(8), 1436. https://doi.org/10.3390/sym13081436