A Fast Selection Based on Similar Cross-Entropy for Steganalytic Feature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fisher Criterion
2.2. Cross-Entropy
3. FSCE
3.1. Contribution Probing
3.1.1. Symbol Description
3.1.2. Construction of Intra-Class Similarity Criterion
3.1.3. Construction of Inter-Class Similarity Criterion
3.1.4. Feature Contribution Metric
3.2. Parameter Setting
3.3. Overall Process and Performance Analysis
Algorithm 1: FSCE. |
Input: Original steganalytic features , and dimension selected Output: Final selected feature and corresponding column number |
|
3.4. The Merits of FSCE
4. Experiment
4.1. Experiment Setup
- (1)
- Set a specified quality factor QF and then transform the PGM images in Bossbase 1.01 into the JPEG images of a certain QF.
- (2)
- Set the embedding rate Payload, and then use the steganography algorithm to embed secret information into the JPEG images to acquire the stego images under the current Payload.
- (3)
- Based on the set QF and Payload, use the steganalysis algorithm to extract the corresponding steganalytic features for the cover/stego images.
- (4)
- Depending on the steganography algorithm, steganalysis algorithm, QF and Payload (whose specific settings are shown in Table 1), by repeating (1)–(3), we will eventually construct a steganography detection image library containing 80,000 cover images and 400,000 stego images, and acquire a library containing 8 different steganalytic features.
- (1)
- Comparison experiments with features selected under different thresholds
- (2)
- Comparison experiments with original features and randomly selected features
- (3)
- Comparison experiments with several classical and state-of-the-art feature selection methods
4.2. Comparison Experiments with Features Selected under Different Thresholds
4.3. Comparison Experiments with Original Features and Randomly Selected Features
4.4. Comparison Experiments with Several Classical and State-of-the-Art Feature Selection Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Zhang, W.; Yu, N. A New Rule for Cost Reassignment in Adaptive Steganography. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2654–2667. [Google Scholar] [CrossRef]
- Denemark, T.; Fridrich, J. Steganography with Multiple JPEG Images of the Same Scene. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2308–2319. [Google Scholar] [CrossRef]
- Tomáš, F.; Judas, J.; Fridrich, J. Minimizing Additive Distortion in Steganography using Syndrome-Trellis Codes. IEEE Trans. Inf. Forensics Secur. 2011, 6, 920–935. [Google Scholar]
- Fridrich, J.; Tomáš, P.; Jan, K. Statistically Undetectable JPEG Steganography: Dead Ends, Challenges, and Opportunities. In Proceedings of the 9th Workshop on Multimedia & Security, Dallas, TX, USA, 20–21 September 2007; pp. 3–14. [Google Scholar]
- Filler, T.; Fridrich, J. Gibbs Construction in Steganography. IEEE Trans. Inf. Forensics Secur. 2010, 5, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Holub, V.; Fridrich, J. Designing Steganographic Distortion using Directional Filters. In Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security, Costa Adeje-Tenerife, Spain, 2–5 December 2012; pp. 234–239. [Google Scholar]
- Vojtěch, H.; Fridrich, J.; Denemark, T. Universal Distortion Function for Steganography in an Arbitrary Domain. EURASIP J. Inf. Secur. 2014, 1, 1–13. [Google Scholar]
- Tomáš, P.; Bas, P.; Fridrich, J. Steganalysis by Subtractive Pixel Adjacency Matrix. IEEE Trans. Inf. Forensics Secur. 2010, 5, 215–224. [Google Scholar]
- Song, X.; Liu, F.; Zhang, Z.; Yang, C.; Luo, X.; Chen, L. 2D Gabor Filters-Based Steganalysis of Content-Adaptive JPEG Steganography. Multimed. Tools Appl. 2016, 76, 26391–26419. [Google Scholar] [CrossRef]
- Tomas, P.; Fridrich, J. Merging MarKov and DCT Features for Multi-Class JPEG Steganalysis. In Proceedings of the Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, USA, 28 January 2007; pp. 650501–650503. [Google Scholar]
- Jan, K.; Fridrich, J. Calibration Revisited. In Proceedings of the 11th ACM Workshop on Multimedia and Security, New York, NY, USA, 7–8 September 2009; pp. 63–74. [Google Scholar]
- Holub, V.; Fridrich, J. Low-Complexity Features for JPEG Steganalysis using Undecimated DCT. IEEE Trans. Inf. Forensics Secur. 2015, 10, 219–228. [Google Scholar] [CrossRef]
- Kodovský, J.; Fridrich, J. Steganalysis of JPEG Images using Rich Models. In Proceedings of the Media Watermarking, Security, and Forensics, Burlingame, CA, USA, 23–25 January 2012; pp. 83030A-1–83030A-13. [Google Scholar]
- Fridrich, J.; Kodovsky, J. Rich Models for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, H. Calibrated Steganalysis of Mp3stego in Multi-Encoder Scenario. Inf. Sci. 2019, 480, 438–453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Z.; Zhang, L.; Li, H.; Yu, N. Decomposing Joint Distortion for Adaptive Steganography. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 2274–2280. [Google Scholar] [CrossRef]
- Denemark, T.; Boroumand, M.; Fridrich, J. Steganalytic Features for Content-Adaptive JPEG Steganography. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1736–1746. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, F.; Liu, J.; Liu, G. Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1138–1150. [Google Scholar] [CrossRef]
- Ye, J.; Ni, J.; Yi, Y. Deep Learning Hierarchical Representations for Image Steganalysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2545–2557. [Google Scholar] [CrossRef]
- Sedighi, V.; Fridrich, J. Histogram layer, Moving Convolutional Neural Networks Towards Feature-Based Steganalysis. Electron. Imaging 2017, 7, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Holub, V.; Fridrich, J.; Denemark, T. Random Projections of Residuals as an Alternative to Co-Occurrences in Steganalysis. In Proceedings of the Media Watermarking, Security, and Forensics 2013, Burlingame, CA, USA, 22 March 2013; p. 86650L. [Google Scholar]
- Holub, V.; Fridrich, J. Random Projections of Residuals for Digital Image Steganalysis. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1996–2006. [Google Scholar] [CrossRef]
- Boroumand, M.; Fridrich, J. Applications of Explicit Non-Linear Feature Maps in Steganalysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 823–833. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, X.; Li, X.; Bao, Z.; Zhang, Y. Selection of Rich Model Steganalysis Features Based on Decision Rough Set α-Positive Region Reduction. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 336–350. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Wang, P.; Luo, X.; Liu, F.; Lu, J. Steganalysis Feature Subspace Selection Based on Fisher Criterion. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics, Tokyo, Japan, 19–21 October 2017; pp. 514–521. [Google Scholar]
- Yu, X.; Ma, Y.; Jin, R.; Xu, L.; Duan, X. A Multi-Scale Feature Selection Method for Steganalytic Feature GFR. IEEE Access 2020, 8, 55063–55075. [Google Scholar] [CrossRef]
- Qin, J.; Sun, X.; Xiang, X.; Niu, C. Principal Feature Selection and Fusion Method for Image Steganalysis. J. Electron. Imaging 2009, 18, 033009. [Google Scholar]
- Wang, Y.; Ma, Y.; Jin, R.; Liu, P.; Ruan, N. Comprehensive Criteria-Based Generalized Steganalysis Feature Selection Method. IEEE Access 2020, 8, 154418–154435. [Google Scholar] [CrossRef]
- Lu, J.; Liu, F.; Luo, X. Selection of Image Features for Steganalysis Based on the Fisher Criterion. Digit. Investig. 2014, 11, 57–66. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, J.; Zhang, Y.; Yang, C.; Luo, X. W2ID Criterion-Based Rich Model Steganalysis Features Selection. Chin. J. Comput. 2021, 44, 724–740. [Google Scholar]
- Chen, Y.; Chen, Y.; Yin, A. Feature Selection for Blind Image Steganalysis using Neighborhood Rough Sets. J. Intell. Fuzzy Syst. 2019, 37, 3709–3720. [Google Scholar] [CrossRef]
- Davidson, J.; Jalan, J. Feature Selection for Steganalysis using the Mahalanobis Distance. In Proceedings of the Media Forensics and Security II, San Jose, CA, USA, 18–20 January 2010; p. 754104. [Google Scholar]
- Boroumand, M.; Chen, M.; Fridrich, J. Deep Residual Network for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1181–1193. [Google Scholar] [CrossRef]
- Denemark, T.; Holub, V.; Cogranne, R.; Fridrich, J. Selection-Channel-Aware Rich Model for Steganalysis of Digital Images. In Proceedings of the IEEE International Workshop on Information Forensics and Security 2014, Atlanta, GA, USA, 3–5 December 2014; pp. 48–53. [Google Scholar]
- Yuan, H.; Li, J.; Lai, L.; Tang, Y. Low-Rank Matrix Regression for Image Feature Extraction and Feature Selection. Inf. Sci. 2020, 522, 214–226. [Google Scholar] [CrossRef]
- Patrick, B.; Tomáš, F.; Tomáš, P. “Break Our Steganographic System”: The Ins and Outs of Organizing BOSS. In Proceedings of the International Workshop on Information Hiding, Berlin, Germany, 18–20 May 2011; pp. 59–70. [Google Scholar]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Pieter, T.; Dirk, P.; Shie, M.; Reuven, Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar]
- Wang, D.; Li, Q.; Zhang, J. A New Method to Analyze Evidence Conflict. Control Theory Appl. 2011, 28, 839–844. [Google Scholar]
- Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444. [Google Scholar] [CrossRef] [Green Version]
Source | BOSSbase 1.01 | Number of cover images | 10,000 |
Size | 512 512 | Number of stego images | |
Colour | Gray-scale | QF | 95, 75 |
Formats | JPEG | Payload | 0.1, 0.2, 0.3, 0.4, 0.5 |
Training images | 5000 pairs | Steganography Algorithm | nsF5 [4], SI-UNIWARD [7], S-UNIWARD [7] |
Testing images | 5000 pairs | Steganalysis Algorithm | GFR [9], DCTR [12], CC-JRM [13], SRM [14] |
Total |
F | P | Q | Origin | 0.5N | 0.52N | 0.54N | 0.56N | 0.58N | 0.6N | 0.62N | 0.64N | 0.66N | 0.68N | 0.7N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | D | 8000 | 4000 | 4160 | 4320 | 4480 | 4640 | 4800 | 4960 | 5120 | 5280 | 5440 | 5600 | |
0.1 | PA | 0.5239 | 0.5221 | 0.5213 | 0.5226 | 0.5258 | 0.5260 | 0.5253 | 0.5253 | 0.5268 | 0.5243 | 0.5259 | 0.5264 | |
0.2 | PA | 0.5256 | 0.5226 | 0.5240 | 0.5242 | 0.5268 | 0.5286 | 0.5271 | 0.5286 | 0.5285 | 0.5287 | 0.5287 | 0.5277 | |
0.3 | PA | 0.5407 | 0.5357 | 0.5372 | 0.5369 | 0.5385 | 0.5412 | 0.5414 | 0.5394 | 0.5400 | 0.5397 | 0.5393 | 0.5397 | |
0.4 | PA | 0.5745 | 0.5666 | 0.5669 | 0.5678 | 0.5684 | 0.5727 | 0.5723 | 0.5719 | 0.5752 | 0.5730 | 0.5736 | 0.5732 | |
0.5 | PA | 0.6300 | 0.6203 | 0.6237 | 0.6256 | 0.6280 | 0.6302 | 0.6298 | 0.6295 | 0.6297 | 0.6283 | 0.6299 | 0.6293 | |
F2 | D | 8000 | 4000 | 4160 | 4320 | 4480 | 4640 | 4800 | 4960 | 5120 | 5280 | 5440 | 5600 | |
0.1 | PA | 0.7209 | 0.7269 | 0.7284 | 0.7267 | 0.7294 | 0.7295 | 0.7284 | 0.7289 | 0.7286 | 0.7286 | 0.7286 | 0.7260 | |
0.2 | PA | 0.7246 | 0.7343 | 0.7336 | 0.7317 | 0.7366 | 0.7366 | 0.7342 | 0.7328 | 0.7346 | 0.7316 | 0.7327 | 0.7326 | |
0.3 | PA | 0.7338 | 0.7432 | 0.7426 | 0.7432 | 0.7442 | 0.7447 | 0.7437 | 0.7417 | 0.7421 | 0.7419 | 0.7406 | 0.7418 | |
0.4 | PA | 0.7557 | 0.7616 | 0.7609 | 0.7622 | 0.7626 | 0.7631 | 0.7634 | 0.7622 | 0.7626 | 0.7622 | 0.7605 | 0.7614 | |
0.5 | PA | 0.7864 | 0.7874 | 0.7901 | 0.7893 | 0.7926 | 0.7924 | 0.7908 | 0.7903 | 0.7911 | 0.7908 | 0.7902 | 0.7907 | |
F3 | D | 8000 | 4000 | 4160 | 4320 | 4480 | 4640 | 4800 | 4960 | 5120 | 5280 | 5440 | 5600 | |
0.1 | PA | 0.8496 | 0.8278 | 0.8311 | 0.8342 | 0.8421 | 0.8438 | 0.8489 | 0.8478 | 0.8473 | 0.8476 | 0.8469 | 0.8486 | |
0.2 | PA | 0.9913 | 0.9789 | 0.9833 | 0.9856 | 0.9876 | 0.9892 | 0.9913 | 0.9907 | 0.9902 | 0.9907 | 0.9909 | 0.9908 | |
0.3 | PA | 0.9993 | 0.9980 | 0.9987 | 0.999 | 0.9994 | 0.9993 | 0.9993 | 0.9994 | 0.9993 | 0.9994 | 0.9993 | 0.9993 | |
0.4 | PA | 0.9998 | — | — | — | — | — | — | — | — | — | — | — | |
0.5 | PA | 0.9999 | — | — | — | — | — | — | — | — | — | — | — | |
F4 | D | 8000 | 4000 | 4160 | 4320 | 4480 | 4640 | 4800 | 4960 | 5120 | 5280 | 5440 | 5600 | |
0.1 | PA | 0.7884 | 0.7972 | 0.7964 | 0.7977 | 0.7965 | 0.7976 | 0.7954 | 0.7964 | 0.7963 | 0.7965 | 0.7964 | 0.7951 | |
0.2 | PA | 0.9607 | 0.9648 | 0.9649 | 0.9652 | 0.9656 | 0.9655 | 0.9652 | 0.9652 | 0.9653 | 0.9654 | 0.9644 | 0.9646 | |
0.3 | PA | 0.9939 | 0.9945 | 0.9946 | 0.9948 | 0.9947 | 0.9947 | 0.9948 | 0.9948 | 0.9947 | 0.9945 | 0.9945 | 0.9945 | |
0.4 | PA | 0.9998 | 0.9981 | 0.9982 | 0.9983 | 0.9983 | 0.9983 | 0.9982 | 0.9983 | 0.9983 | 0.9982 | 0.9983 | 0.9983 | |
0.5 | PA | 0.9991 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | |
F5 | D | 17,000 | 8500 | 8840 | 9180 | 9520 | 9860 | 10,200 | 10,540 | 10,880 | 11,220 | 11,560 | 11,900 | |
0.1 | PA | 0.5168 | 0.5155 | 0.517 | 0.5165 | 0.5173 | 0.5174 | 0.517 | 0.518 | 0.5166 | 0.5187 | 0.5192 | 0.5151 | |
0.2 | PA | 0.5205 | 0.5199 | 0.5208 | 0.5218 | 0.5215 | 0.5223 | 0.5222 | 0.5209 | 0.5227 | 0.5229 | 0.5222 | 0.5201 | |
0.3 | PA | 0.5388 | 0.5365 | 0.5370 | 0.5367 | 0.5380 | 0.5389 | 0.5381 | 0.5383 | 0.5384 | 0.5385 | 0.5375 | 0.5388 | |
0.4 | PA | 0.5738 | 0.5732 | 0.5738 | 0.5738 | 0.5741 | 0.5754 | 0.5758 | 0.5744 | 0.5747 | 0.5745 | 0.5748 | 0.5761 | |
0.5 | PA | 0.6292 | 0.6268 | 0.6275 | 0.6290 | 0.6275 | 0.6294 | 0.6287 | 0.6275 | 0.6280 | 0.6290 | 0.6288 | 0.6283 | |
F6 | D | 17,000 | 8500 | 8840 | 9180 | 9520 | 9860 | 10,200 | 10,540 | 10,880 | 11,220 | 11,560 | 11,900 | |
0.1 | PA | 0.5035 | 0.5051 | 0.5034 | 0.5045 | 0.5054 | 0.5056 | 0.5042 | 0.504 | 0.5036 | 0.5052 | 0.5044 | 0.5033 | |
0.2 | PA | 0.5245 | 0.5242 | 0.5237 | 0.5259 | 0.5252 | 0.5257 | 0.5251 | 0.5248 | 0.5241 | 0.5231 | 0.5254 | 0.5244 | |
0.3 | PA | 0.5603 | 0.5610 | 0.5612 | 0.5593 | 0.5602 | 0.5614 | 0.5616 | 0.5616 | 0.5611 | 0.5604 | 0.5612 | 0.5602 | |
0.4 | PA | 0.6125 | 0.6120 | 0.6130 | 0.6126 | 0.6108 | 0.6139 | 0.6134 | 0.6145 | 0.6116 | 0.6134 | 0.6114 | 0.6110 | |
0.5 | PA | 0.6752 | 0.6735 | 0.6739 | 0.6739 | 0.6753 | 0.6774 | 0.6758 | 0.6775 | 0.6758 | 0.6754 | 0.6742 | 0.6752 | |
F7 | D | 22,510 | 11,255 | 11,705 | 12,155 | 12,605 | 13,055 | 13,506 | 13,956 | 14,406 | 14,856 | 15,306 | 15,757 | |
0.1 | PA | 0.529 | 0.5288 | 0.5295 | 0.5305 | 0.531 | 0.5305 | 0.5298 | 0.5302 | 0.5307 | 0.5303 | 0.5304 | 0.5303 | |
0.2 | PA | 0.5345 | 0.5350 | 0.5346 | 0.5344 | 0.5346 | 0.5357 | 0.5358 | 0.5358 | 0.5364 | 0.536 | 0.5356 | 0.536 | |
0.3 | PA | 0.538 | 0.5398 | 0.5406 | 0.5400 | 0.5397 | 0.5404 | 0.5390 | 0.5404 | 0.5407 | 0.5398 | 0.5401 | 0.5394 | |
0.4 | PA | 0.5475 | 0.5467 | 0.5476 | 0.5463 | 0.5485 | 0.5484 | 0.5473 | 0.5483 | 0.5485 | 0.5472 | 0.5475 | 0.5466 | |
0.5 | PA | 0.5705 | 0.5688 | 0.5693 | 0.5707 | 0.5715 | 0.5724 | 0.569 | 0.5710 | 0.5721 | 0.5703 | 0.5711 | 0.5715 | |
D | 34,671 | 17,335 | 18,028 | 18,722 | 19,415 | 20,109 | 20,802 | 21,496 | 22,189 | 22,882 | 23,576 | 24,269 | ||
F8 | 0.1 | PA | 0.5988 | 0.5957 | 0.5957 | 0.5972 | 0.5974 | 0.5982 | 0.5934 | 0.5967 | 0.5979 | 0.5986 | 0.598 | 0.5991 |
0.2 | PA | 0.6795 | 0.6799 | 0.6788 | 0.6802 | 0.6800 | 0.6802 | 0.6788 | 0.6797 | 0.6801 | 0.6792 | 0.6804 | 0.6807 | |
0.3 | PA | 0.745 | 0.7447 | 0.7440 | 0.7444 | 0.7439 | 0.7451 | 0.7457 | 0.7438 | 0.7444 | 0.7448 | 0.7458 | 0.7457 | |
0.4 | PA | 0.7938 | 0.7935 | 0.7935 | 0.7937 | 0.7944 | 0.7947 | 0.7944 | 0.7947 | 0.7943 | 0.7935 | 0.7942 | 0.7943 | |
0.5 | PA | 0.8375 | 0.8365 | 0.8369 | 0.8373 | 0.8386 | 0.8387 | 0.8375 | 0.8379 | 0.8381 | 0.8378 | 0.8386 | 0.8374 |
Feature | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Payload | Quality | D | PA | PA | PA | PA | D | PA | PA | D | PA | D | PA |
0.1 | Origin | 8000 | 0.5239 | 0.7209 | 0.8496 | 0.7884 | 17,000 | 0.5168 | 0.5035 | 22,510 | 0.5290 | 34,671 | 0.5988 |
Random | 4640 | 0.5232 | 0.6920 | 0.7847 | 0.7511 | 9860 | 0.5151 | 0.5021 | 13,055 | 0.5270 | 20,109 | 0.5969 | |
FSCE | 4640 | 0.5260 | 0.7295 | 0.8438 | 0.7976 | 9860 | 0.5174 | 0.5056 | 13,055 | 0.5305 | 20,109 | 0.5989 | |
0.2 | Origin | 8000 | 0.5256 | 0.7246 | 0.9913 | 0.9607 | 17,000 | 0.5205 | 0.5245 | 22,510 | 0.5345 | 34,671 | 0.6795 |
Random | 4640 | 0.5240 | 0.6981 | 0.9681 | 0.9395 | 9860 | 0.5180 | 0.5218 | 13,055 | 0.5311 | 20,109 | 0.6764 | |
FSCE | 4640 | 0.5286 | 0.7366 | 0.9892 | 0.9655 | 9860 | 0.5223 | 0.5257 | 13,055 | 0.5357 | 20,109 | 0.6802 | |
0.3 | Origin | 8000 | 0.5407 | 0.7338 | 0.9993 | 0.9939 | 17,000 | 0.5388 | 0.5603 | 22,510 | 0.5380 | 34,671 | 0.7450 |
Random | 4640 | 0.5367 | 0.7074 | 0.9979 | 0.9907 | 9860 | 0.5346 | 0.5565 | 13,055 | 0.5356 | 20,109 | 0.7413 | |
FSCE | 4640 | 0.5412 | 0.7447 | 0.9993 | 0.9947 | 9860 | 0.5389 | 0.5614 | 13,055 | 0.5404 | 20,109 | 0.7451 | |
0.4 | Origin | 8000 | 0.5745 | 0.7557 | 0.9998 | 0.9998 | 17,000 | 0.5738 | 0.6125 | 22,510 | 0.5475 | 34,671 | 0.7938 |
Random | 4640 | 0.5674 | 0.7298 | — | 0.9974 | 9860 | 0.5689 | 0.6067 | 13,055 | 0.5442 | 20,109 | 0.7907 | |
FSCE | 4640 | 0.5744 | 0.7631 | — | 0.9993 | 9860 | 0.5754 | 0.6139 | 13,055 | 0.5484 | 20,109 | 0.7947 | |
0.5 | Origin | 8000 | 0.6300 | 0.7864 | 0.9999 | 0.9991 | 17,000 | 0.6292 | 0.6752 | 22,510 | 0.5705 | 34,671 | 0.8375 |
Random | 4640 | 0.6208 | 0.7626 | — | 0.9989 | 9860 | 0.6182 | 0.6692 | 13,055 | 0.5665 | 20,109 | 0.8354 | |
FSCE | 4640 | 0.6302 | 0.7924 | — | 0.9992 | 9860 | 0.6294 | 0.6774 | 13,055 | 0.5724 | 20,109 | 0.8387 |
Feature | F1 | F2 | F3 | F4 | |||||
---|---|---|---|---|---|---|---|---|---|
Payload | Quality | D | PA | D | PA | D | PA | D | PA |
0.1 | Origin | 8000 | 0.5239 | 8000 | 0.7209 | 8000 | 0.8496 | 8000 | 0.7884 |
PCA | 4640 | 0.5001 | 4640 | 0.5012 | 4640 | 0.5009 | 4640 | 0.5006 | |
SRGS | 2150 | 0.5193 | 7542 | 0.7213 | 4534 | 0.8335 | 5499 | 0.7868 | |
CGSM | 6999 | 0.5234 | 6850 | 0.7153 | 6810 | 0.8252 | 6999 | 0.7866 | |
FSCE | 4640 | 0.5260 | 4640 | 0.7295 | 4640 | 0.8438 | 4640 | 0.7976 | |
0.2 | Origin | 8000 | 0.5256 | 8000 | 0.7246 | 8000 | 0.9913 | 8000 | 0.9607 |
PCA | 4640 | 0.5000 | 4640 | 0.5008 | 4640 | 0.5015 | 4640 | 0.5013 | |
SRGS | 4339 | 0.5293 | 7252 | 0.7271 | 4389 | 0.9864 | 5524 | 0.9617 | |
CGSM | 6278 | 0.5239 | 6591 | 0.7184 | 6263 | 0.9895 | 6962 | 0.9605 | |
FSCE | 4640 | 0.5286 | 4640 | 0.7366 | 4640 | 0.9892 | 4640 | 0.9655 | |
0.3 | Origin | 8000 | 0.5407 | 8000 | 0.7338 | 8000 | 0.9993 | 8000 | 0.9939 |
PCA | 4640 | 0.5002 | 4640 | 0.5003 | 4640 | 0.5023 | 4640 | 0.5018 | |
SRGS | 5913 | 0.5398 | 5056 | 0.7366 | 4420 | 0.9993 | 5534 | 0.9945 | |
CGSM | 5671 | 0.5389 | 6356 | 0.7283 | 5068 | 0.9991 | 6834 | 0.9937 | |
FSCE | 4640 | 0.5412 | 4640 | 0.7447 | 4640 | 0.9993 | 4640 | 0.9947 | |
0.4 | Origin | 8000 | 0.5745 | 8000 | 0.7557 | 8000 | 0.9998 | 8000 | 0.9998 |
PCA | 4640 | 0.5005 | 4640 | 0.4997 | — | — | 4640 | 0.5023 | |
SRGS | 7051 | 0.5681 | 2355 | 0.7302 | — | — | 5814 | 0.9982 | |
CGSM | 4956 | 0.5720 | 6080 | 0.7513 | — | — | 6568 | 0.9979 | |
FSCE | 4640 | 0.5744 | 4640 | 0.7631 | — | — | 4640 | 0.9993 | |
0.5 | Origin | 8000 | 0.6300 | 8000 | 0.7864 | 8000 | 0.9999 | 8000 | 0.9991 |
PCA | 4640 | 0.5002 | 4640 | 0.5005 | — | — | 4640 | 0.5045 | |
SRGS | 7003 | 0.6170 | 2323 | 0.7483 | — | — | 5473 | 0.9991 | |
CGSM | 4570 | 0.6280 | 5749 | 0.7815 | — | — | 6105 | 0.9990 | |
FSCE | 4640 | 0.6302 | 4640 | 0.7924 | — | — | 4640 | 0.9992 |
Feature | F5 | F6 | F7 | F8 | |||||
---|---|---|---|---|---|---|---|---|---|
Payload | Quality | D | PA | D | PA | D | PA | D | PA |
0.1 | Origin | 17,000 | 0.5168 | 17,000 | 0.5035 | 22,510 | 0.5290 | 34,671 | 0.5988 |
PCA | 9860 | 0.5000 | 9860 | 0.5002 | 13,055 | 0.5003 | 20,109 | 0.5013 | |
SRGS | 4508 | 0.5144 | 8437 | 0.5032 | 8713 | 0.5353 | 22,221 | 0.5930 | |
CGSM | 15,794 | 0.5147 | 14,548 | 0.5032 | 15,244 | 0.5324 | 28,155 | 0.5971 | |
FSCE | 9860 | 0.5174 | 9860 | 0.5056 | 13,055 | 0.5305 | 20,109 | 0.5989 | |
0.2 | Origin | 17,000 | 0.5205 | 17,000 | 0.5245 | 22,510 | 0.5345 | 34,671 | 0.6795 |
PCA | 9860 | 0.5001 | 9860 | 0.5002 | 13,055 | 0.4998 | 20,109 | 0.5021 | |
SRGS | 7054 | 0.5210 | 14,581 | 0.5243 | 12,423 | 0.5394 | 21,577 | 0.6685 | |
CGSM | 15,363 | 0.5222 | 12,813 | 0.5243 | 13,143 | 0.5373 | 20,731 | 0.6740 | |
FSCE | 9860 | 0.5223 | 9860 | 0.5257 | 13,055 | 0.5380 | 20,109 | 0.6802 | |
0.3 | Origin | 17,000 | 0.5388 | 17,000 | 0.5603 | 22,510 | 0.5356 | 34,671 | 0.7450 |
PCA | 9860 | 0.5002 | 9860 | 0.5006 | 13,055 | 0.5000 | 20,109 | 0.5038 | |
SRGS | 8208 | 0.5363 | 15,520 | 0.5607 | 14,350 | 0.5419 | 21,316 | 0.7318 | |
CGSM | 14,813 | 0.5375 | 11,310 | 0.5605 | 11,330 | 0.5413 | 14,166 | 0.7274 | |
FSCE | 9860 | 0.5389 | 9860 | 0.5614 | 13,055 | 0.5404 | 20,109 | 0.7451 | |
0.4 | Origin | 17,000 | 0.5738 | 17,000 | 0.6125 | 22,510 | 0.5475 | 34,671 | 0.7938 |
PCA | 9860 | 0.5005 | 9860 | 0.5008 | 13,055 | 0.5005 | 20,109 | 0.5041 | |
SRGS | 8578 | 0.5742 | 14,029 | 0.6109 | 17,813 | 0.5503 | 21,425 | 0.7825 | |
CGSM | 14,121 | 0.5743 | 10,255 | 0.6088 | 9946 | 0.5490 | 9506 | 0.7608 | |
FSCE | 9860 | 0.5754 | 9860 | 0.6139 | 13,055 | 0.5484 | 20,109 | 0.7947 | |
0.5 | Origin | 17,000 | 0.6292 | 17,000 | 0.6752 | 22,510 | 0.5705 | 34,671 | 0.8375 |
PCA | 9860 | 0.5007 | 9860 | 0.5020 | 13,055 | 0.5006 | 20,109 | 0.5068 | |
SRGS | 8580 | 0.6275 | 16,043 | 0.6749 | 19,537 | 0.5687 | 21,750 | 0.8239 | |
CGSM | 13,541 | 0.6294 | 10,233 | 0.6766 | 8773 | 0.5706 | 7239 | 0.7954 | |
FSCE | 9860 | 0.6294 | 9860 | 0.6774 | 13,055 | 0.5724 | 20,109 | 0.8387 |
Feature | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |
---|---|---|---|---|---|---|---|---|---|
P | Method | Time of Selecting Feature (s) | |||||||
0.1 | PCA | 127.49 | 127.1 | 127.87 | 127.19 | 272.17 | 274.07 | 314.23 | 408.6 |
SRGS | 271.17 | 813.01 | 542.54 | 663.17 | 1117.07 | 1002.79 | 1152.21 | 2586.29 | |
CGSM | 8.65 | 8.27 | 9.12 | 10.40 | 28.85 | 37.96 | 77.47 | 35.04 | |
FSCE | 2.95 | 2.88 | 2.81 | 2.95 | 6.22 | 5.89 | 8.12 | 17.44 | |
0.2 | PCA | 127.51 | 126.33 | 128.39 | 127.63 | 272.66 | 275.65 | 310.81 | 414.14 |
SRGS | 529.64 | 721.53 | 528.33 | 651.4 | 1453.06 | 1537.18 | 1507.82 | 2537.18 | |
CGSM | 8.27 | 8.19 | 8.65 | 10.33 | 22.05 | 34.45 | 79.38 | 37.91 | |
FSCE | 2.96 | 2.89 | 2.84 | 2.90 | 6.20 | 6.38 | 7.93 | 17.83 | |
0.3 | PCA | 127.74 | 126.54 | 127.60 | 127.04 | 272.81 | 271.10 | 315.25 | 415.16 |
SRGS | 697.29 | 600.23 | 519.90 | 684.31 | 1537.49 | 1790.01 | 1726.11 | 2529.80 | |
CGSM | 9.83 | 8.31 | 8.63 | 8.34 | 28.84 | 35.15 | 79.94 | 37.09 | |
FSCE | 2.92 | 2.81 | 2.84 | 2.80 | 6.28 | 6.36 | 7.93 | 23.75 | |
0.4 | PCA | 128.59 | 127.06 | 127.71 | 126.75 | 265.68 | 270.97 | 311.63 | 407.24 |
SRGS | 723.55 | 283.77 | 525.92 | 639.65 | 1668.66 | 1869.75 | 2226.19 | 2525.94 | |
CGSM | 8.35 | 8.27 | 8.18 | 8.78 | 22.07 | 35.81 | 97.26 | 98.65 | |
FSCE | 2.95 | 2.81 | 2.87 | 2.98 | 6.20 | 6.38 | 7.88 | 15.17 | |
0.5 | PCA | 128.51 | 127.74 | 127.27 | 126.91 | 270.76 | 272.81 | 310.29 | 415.56 |
SRGS | 768.14 | 297.59 | 531.77 | 656.5 | 1704.28 | 1824.51 | 2494.69 | 2570.46 | |
CGSM | 8.38 | 9.50 | 8.08 | 12.52 | 28.97 | 35.49 | 103.72 | 117.89 | |
FSCE | 2.93 | 2.82 | 2.83 | 2.87 | 6.22 | 6.37 | 8.30 | 15.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, R.; Yu, X.; Ma, Y.; Yin, S.; Xu, L. A Fast Selection Based on Similar Cross-Entropy for Steganalytic Feature. Symmetry 2021, 13, 1564. https://doi.org/10.3390/sym13091564
Jin R, Yu X, Ma Y, Yin S, Xu L. A Fast Selection Based on Similar Cross-Entropy for Steganalytic Feature. Symmetry. 2021; 13(9):1564. https://doi.org/10.3390/sym13091564
Chicago/Turabian StyleJin, Ruixia, Xinquan Yu, Yuanyuan Ma, Shuang Yin, and Lige Xu. 2021. "A Fast Selection Based on Similar Cross-Entropy for Steganalytic Feature" Symmetry 13, no. 9: 1564. https://doi.org/10.3390/sym13091564
APA StyleJin, R., Yu, X., Ma, Y., Yin, S., & Xu, L. (2021). A Fast Selection Based on Similar Cross-Entropy for Steganalytic Feature. Symmetry, 13(9), 1564. https://doi.org/10.3390/sym13091564