Penning-Trap Searches for Lorentz and CPT Violation
Abstract
:1. Introduction
2. Theory
2.1. Lagrange Density
2.2. Perturbative Energy Shifts
2.3. Cyclotron and Anomaly Frequencies
2.4. Sidereal Variations
3. Experiments
3.1. The Charge-to-Mass Ratios
3.1.1. The Proton Sector
3.1.2. The Electron Sector
3.2. The g Factors and Magnetic Moments
3.2.1. The Proton Sector
3.2.2. The Electron Sector
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Transformations
References
- Hanneke, D.; Fogwell, S.; Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 2008, 100, 120801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Potting, R. CPT and strings. Nucl. Phys. B 1991, 359, 545–570. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the Standard Model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the Standard Model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, O.W. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 2002, 89, 231602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A. Gravity, Lorentz violation, and the Standard Model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [Google Scholar] [CrossRef] [Green Version]
- Drummond, I.T. Quantum field theory in a multimetric background. Phys. Rev. D 2013, 88, 025009. [Google Scholar] [CrossRef] [Green Version]
- Belich, H.; Bernald, L.D.; Gaete, P.; Helayël-Neto, J.A.; Leal, F.J.L. Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario. Eur. Phys. J. C 2015, 75, 291. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; Lane, C.D.; Okamoto, T. Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Sheikh-Jabbari, M.M.; Tureanu, A. Non-commutativity of space-time and the hydrogen atom spectrum. Eur. Phys. J. C 2004, 36, 251–252. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M. Perturbative analysis on infrared aspects of noncommutative QED on R4. Phys. Lett. B 2000, 478, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.E.G.; Maluf, R.V.; Almeida, C.A.S. A nonlinear dynamics for the scalar field in Randers spacetime. Phys. Lett. B 2017, 766, 263–267. [Google Scholar] [CrossRef]
- Foster, J.; Lehnert, R. Classical-physics applications for Finsler b space. Phys. Lett. B 2015, 746, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.; Kostelecký, V.A. Riemann-Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 2018, 786, 319–326. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. Testing CPT with anomalous magnetic moments. Phys. Rev. Lett. 1997, 79, 1432. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. CPT and Lorentz tests in Penning traps. Phys. Rev. D 1998, 57, 3932. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Kostelecký, V.A. Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D 2016, 94, 056008. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Rawnak, M.F. Lorentz and CPT tests with charge-to-mass ratio comparisons in Penning traps. Phys. Rev. D 2020, 94, 056009. [Google Scholar] [CrossRef]
- Mittleman, R.K.; Ioannou, I.I.; Dehmelt, H.G.; Russell, N. Bound on CPT and Lorentz symmetry with a trapped electron. Phys. Rev. Lett. 1999, 102, 2116. [Google Scholar] [CrossRef]
- Hanneke, D. Cavity Control in a Single-Electron Quantum Cyclotron: An Improved Measurement of the Electron Magnetic Moment. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2007. [Google Scholar]
- Ding, Y. Lorentz and CPT tests using Penning traps. Symmetry 2019, 11, 1220. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D. CPT and Lorentz tests with muons. Phys. Rev. Lett. 2000, 84, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, A.H.; Kostelecký, V.A.; Vargas, A. Laboratory tests of Lorentz and CPT symmetry with muons. Phys. Rev. D 2014, 90, 076009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Vargas, A. Lorentz and CPT tests in hydrogen, antihydrogen, and related systems. Phys. Rev. D 2015, 92, 056002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Vargas, A. Lorentz and CPT Tests with clock-comparison experiments. Phys. Rev. D 2018, 98, 036003. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kostelecký, V.A. Gauge field theories with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2019, 99, 056016. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510–514. [Google Scholar] [CrossRef] [Green Version]
- For a review see, for example, Brown, L.S.; Gabrielse, G. Geonium theory: Physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 1986, 58, 233. [Google Scholar]
- Kostelecký, V.A.; Lane, C.D. Constraints on Lorentz violation from clock-comparison experiments. Phys. Rev. D 1999, 60, 116010. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 2002, 66, 056005. [Google Scholar] [CrossRef] [Green Version]
- Canè, F.; Bear, D.; Phillips, D.F.; Rosen, M.S.; Smallwood, C.L.; Stoner, R.E.; Walsworth, R.L.; Kostelecký, V.A. Bound on Lorentz and CPT violating boost effects for the neutron. Phys. Rev. Lett. 2004, 93, 230801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckel, B.R.; Adelberger, E.G.; Cramer, C.E.; Cook, T.S.; Schlamminger, S.; Schmidt, U. Preferred-frame and CP-violation tests with polarized electrons. Phys. Rev. D 2008, 78, 092006. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Probing Lorentz and CPT violation with space-based experiments. Phys. Rev. D 2003, 68, 125008. [Google Scholar] [CrossRef] [Green Version]
- Gabrielse, G.; Khabbaz, A.; Hall, D.S.; Heimann, C.; Kalinowsky, H.; Jhe, W. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 1999, 82, 3198. [Google Scholar] [CrossRef] [Green Version]
- Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; Van Gorp, S.; Blaum, K.; Matsuda, Y.; et al. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 2015, 524, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Schwinberg, P.B.; Van Dyck Jr., R.S.; Dehmelt, H.G. Trapping and thermalization of positrons for geonium spectroscopy. Phys. Lett. A 1981, 81, 119–120. [Google Scholar] [CrossRef]
- Hoogerheide, S.F.; Dorr, J.C.; Novitski, E.; Gabrielse, G. High efficiency positron accumulation for high-precision magnetic moment experiments. Rev. Sci. Instrum. 2015, 86, 053301. [Google Scholar] [CrossRef] [Green Version]
- Gabrielse, G.; Fayer, S.E.; Myers, T.G.; Fan, X. Towards an improved test of the Standard Model’s most precise prediction. Atoms 2019, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Mooser, A.; Bohman, M.; Schön, N.; Harrington, J.; Higuchi, T.; Nagahama, H.; Sellner, S.; Smorra, C.; Blaum, K.; et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 2017, 358, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Smorra, C.; Walz, J. Direct high-precision measurement of the magnetic moment of the proton. Nature 2014, 509, 596–599. [Google Scholar] [CrossRef] [Green Version]
- Smorra, C.; Sellner, S.; Borchert, M.J.; Harrington, J.A.; Higuchi, T.; Nagahama, H.; Tanaka, T.; Mooser, A.; Schneider, G.; Bohman, M.; et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 2017, 550, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meiners, T.; Niemann, M.; Paschke, A.G.; Borchert, M.; Idel, A.; Mielke, J.; Voges, K.; Bautista-Salvador, A.; Lehnert, R.; Ulmer, S.; et al. Towards sympathetic laser cooling and detection of single (anti-)protons. In Proceedings of the Seventh Meeting on CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2017. [Google Scholar]
- Dehmelt, H.G.; Mittleman, R.K.; Van Dyck, R.S.; Schwinberg, P. Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles. Phys. Rev. Lett. 1999, 83, 4694. [Google Scholar] [CrossRef] [Green Version]
Coefficient | Constraint | Experiment | Reference |
---|---|---|---|
< GeV | ATRAP | [41] | |
< | ATRAP | [41] | |
< | ATRAP | [41] | |
< | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | ATRAP | [41] | |
< GeV | ATRAP | [41] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< | BASE | [42] | |
< | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] |
Coefficient | Constraint | Experiment | Reference |
---|---|---|---|
< GeV | ATRAP | [41] | |
< | ATRAP | [41] | |
< | ATRAP | [41] | |
< | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | ATRAP | [41] | |
< GeV | ATRAP | [41] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< | BASE | [42] | |
< | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] | |
< GeV | BASE | [42] |
Coefficient | Constraint | Experiment | Reference |
---|---|---|---|
< GeV | Washington | [43] | |
< | Washington | [43] | |
< | Washington | [43] | |
< | Washington | [43] | |
< GeV | Washington | [43] | |
< GeV | Washington | [43] | |
< GeV | Washington | [43] | |
< GeV | Washington | [43] | |
< GeV | Washington | [43] |
Coefficient | Constraint | Experiment | Reference |
---|---|---|---|
< | BASE | [46,48] | |
< | BASE | [46,48] | |
< | BASE | [46,48] | |
< | BASE | [46,48] | |
< | BASE | [46,48] | |
< | BASE | [46,48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Olewiler, T.D.; Rawnak, M.F. Penning-Trap Searches for Lorentz and CPT Violation. Symmetry 2021, 13, 1703. https://doi.org/10.3390/sym13091703
Ding Y, Olewiler TD, Rawnak MF. Penning-Trap Searches for Lorentz and CPT Violation. Symmetry. 2021; 13(9):1703. https://doi.org/10.3390/sym13091703
Chicago/Turabian StyleDing, Yunhua, Teague D. Olewiler, and Mohammad Farhan Rawnak. 2021. "Penning-Trap Searches for Lorentz and CPT Violation" Symmetry 13, no. 9: 1703. https://doi.org/10.3390/sym13091703
APA StyleDing, Y., Olewiler, T. D., & Rawnak, M. F. (2021). Penning-Trap Searches for Lorentz and CPT Violation. Symmetry, 13(9), 1703. https://doi.org/10.3390/sym13091703