Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems
Abstract
:1. Introduction
2. Coupled Oscillator Solver Applied to Ising Spin Problems
3. Eigenmode Mapping to Visualize Frustration Localization
4. Application to Larger Problems and Benchmark
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishimori, H. Statistical Physics of Spin Glasses and Information Processing: An Introduction; Clarendon Press: Oxford, UK, 2001. [Google Scholar]
- Mezard, M.; Parisi, G.; Virasoro, M. Spin Glass Theory and Beyond; World Scientific: Singapore, 1998. [Google Scholar]
- Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Physik. 1925, 31, 253–258. [Google Scholar] [CrossRef]
- Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 1982, 15, 3241–3253. [Google Scholar] [CrossRef]
- Peres, F.; Castelli, M. Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development. Appl. Sci. 2021, 11, 6449. [Google Scholar] [CrossRef]
- Tanahashi, K.; Takayanagi, S.; Motohashi, T.; Tanaka, S. Application of Ising Machines and a Software Development for Ising Machines. Jpn. J. Appl. Phys. 2019, 88, 061010. [Google Scholar] [CrossRef]
- Andrew, L. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [Google Scholar]
- Simone, C.D.; Diehl, M.; Jünger, M.; Mutzel, P.; Reinelt, G.; Rinaldi, G. Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm. J. Stat. Phys. 1995, 80, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Gendreau, M.; Potvin, J.Y. Metaheuristics in Combinatorial Optimization. Ann. Oper. Res. 2005, 140, 189–213. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Marinari, E.; Parisi, G. Simulated Tempering: A New Monte Carlo Scheme. EPL Europhys. Lett. 1992, 19, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Isakov, S.V.; Zintchenko, I.N.; Rønnow, T.F.; Troyer, M. Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 2015, 192, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Marandi, A.; Wang, Z.; Takata, K.; Byer, R.L.; Yamamoto, Y. Network of time-multiplexedoptical parametric oscillators as a coherent Ising machine. Nat. Photonics 2014, 8, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Haribara, Y.; Igarashi, K.; Sonobe, T.; Tamate, S.; Honjo, T.; Marandi, A.; McMahon, P.L.; Umeki, T.; Enbutsu, K.; et al. A coherent Ising machine for 2000-node optimization problems. Science 2016, 354, 603–606. [Google Scholar] [CrossRef] [Green Version]
- McMahon, P.L.; Marandi, A.; Haribara, Y.; Hamerly, R.; Langrock, C.; Tamate, S.; Inagaki, T.; Takesue, H.; Utsunomiya, S.; Aihara, K.; et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 2016, 354, 614–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierangeli, D.; Marcucci, G.; Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 2019, 122, 213902. [Google Scholar] [CrossRef] [Green Version]
- Pierangeli, D.; Marcucci, G.; Brunner, D.; Conti, C. Noise-enhanced spatial-photonic Ising machine. Nanophotonics 2020, 9, 4109–4116. [Google Scholar] [CrossRef]
- Yamaoka, M.; Yoshimura, C.; Hayashi, M.; Okuyama, T.; Aoki, H.; Mizuno, H. A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid State Circ. 2015, 51, 303–309. [Google Scholar]
- Tsukamoto, S.; Takatsu, M.; Matsubara, S.; Tamura, H. An accelerator architecture for combinatorial optimization problems. Fujitsu Sci. Tech. J. 2017, 53, 8–13. [Google Scholar]
- Aramon, M.; Rosenberg, G.; Valiante, E.; Miyazawa, T.; Tamura, H.; Katzgraber, H.G. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef]
- Boixo, S.; Rønnow, T.F.; Isakov, S.V.; Wang, Z.; Wecker, D.; Lidar, D.A.; Martinis, J.M.; Troyer, M. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 2014, 10, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Goto, H. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network. Sci. Rep. 2016, 6, 21686. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Tatsumura, K.; Dixon, A.R. Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems. Sci. Adv. 2019, 5, eaav2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanazawa, S.; Kuwamura, K.; Kihara, Y.; Hirukawa, Y.; Saiki, T. Computations with near-field coupled plasmon particles interacting with phase-change materials. Appl. Phys. A 2015, 121, 1323–1327. [Google Scholar] [CrossRef]
- Saiki, T. Switching of localized surface plasmon resonance of gold nanoparticles using phase-change materials and implementation of computing functionality. Appl. Phys. A 2017, 123, 577. [Google Scholar] [CrossRef]
- The Program is Available on the Server. Available online: https://software.cs.uni-koeln.de/spinglass/client.html (accessed on 6 September 2021).
- Pardella, G.; Liers, F. Exact ground states of large two-dimensional planar Ising spin glasses. Phys. Rev. E 2008, 78, 056705. [Google Scholar] [CrossRef] [Green Version]
Sample# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
k | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 3 |
nCOmax/nE (%) | 94.2 | 95.3 | 98.8 | 96.4 | 96.6 | 96.5 | 96.4 | 98.8 | 97.6 |
Sample# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
k | 2 | 6 | 8 | 5 | 6 | 4 | 2 | 8 | 3 |
nCOmax/nE before flipping (%) | 94.7 | 96.2 | 96.2 | 95.0 | 95.3 | 95.6 | 94.7 | 95.3 | 95.5 |
nCOmax/nE after flipping (%) | 96.7 | 97.9 | 97.4 | 97.4 | 97.6 | 97.7 | 96.7 | 97.1 | 97.6 |
Sample# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
k | 7 | 2 | 2 | 7 | 9 | 2 | 5 | 2 | 6 |
nCOmax/nE before flipping (%) | 95.9 | 94.9 | 95.3 | 95.4 | 95.8 | 95.1 | 95.7 | 95.4 | 95.2 |
nCOmax/nE after flipping (%) | 97.2 | 96.6 | 97.4 | 97.6 | 97.1 | 97.1 | 97.5 | 97.3 | 96.9 |
Sample# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
k | 7 | 1 | 13 | 6 | 1 | 10 | 10 | 4 | 10 |
nCOmax/nE before flipping (%) | 95.0 | 94.9 | 95.4 | 94.8 | 95.0 | 95.6 | 94.8 | 94.9 | 94.9 |
nCOmax/nE after flipping (%) | 97.1 | 97.3 | 97.3 | 97.6 | 97.2 | 97.5 | 97.3 | 96.7 | 97.1 |
Sample# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
k | 15 | 12 | 13 | 4 | 25 | 19 | 2 | 5 | 21 | 7 |
nCOmax/nE (%) | 97.2 | 97.5 | 97.0 | 97.0 | 96.8 | 97.5 | 96.9 | 97.0 | 97.4 | 97.3 |
TCO | 2.74 | 2.71 | 2.74 | 2.73 | 2.75 | 2.74 | 2.73 | 2.73 | 2.76 | 2.74 |
TSA | 8.89 | 9.50 | 7.60 | 8.20 | 8.21 | 8.40 | 7.37 | 7.65 | 8.83 | 8.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakami, S.; Ikeda, O.; Hirukawa, Y.; Saiki, T. Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems. Symmetry 2021, 13, 1745. https://doi.org/10.3390/sym13091745
Murakami S, Ikeda O, Hirukawa Y, Saiki T. Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems. Symmetry. 2021; 13(9):1745. https://doi.org/10.3390/sym13091745
Chicago/Turabian StyleMurakami, Shintaro, Okuto Ikeda, Yusuke Hirukawa, and Toshiharu Saiki. 2021. "Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems" Symmetry 13, no. 9: 1745. https://doi.org/10.3390/sym13091745
APA StyleMurakami, S., Ikeda, O., Hirukawa, Y., & Saiki, T. (2021). Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems. Symmetry, 13(9), 1745. https://doi.org/10.3390/sym13091745