On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process
Abstract
:1. Introduction
2. The Poisson Regression Model
3. Monitoring Methods Based on Poisson Model
3.1. Existing Methods Based on the Poisson Model
3.2. Suggested Methods Based on the Poisson Model
3.2.1. R/SR-HWMA Control Charts
3.2.2. R/SR-DHWMA Control Charts
4. Assessment of Suggested Methods Using Simulation
4.1. The Simulated Poisson Model
- (a)
- Additive and ablative shifts in the process mean through changing to and to .
- (b)
- Simultaneous positive and negative shifts in and . For example, changes to , and, at the same time, changes to .
4.2. Algorithm for Control Limit Constants
- a.
- Firstly, use the simulated Poisson model described in Section 4.1 to create a sample data collection of size .
- b.
- Run the Poisson regression model to the simulated dataset and calculate the deviance residuals ( by Equation (5) and standardized residuals by using Equation (6). Moreover, determine the mean and standard error of and .
- c.
- For all EWMA charts, specify the arbitrary values of and and decide on and for the HWMA charts. In the same way, set the arbitrary values of and for the DHWMA charts. Furthermore, get the control chart statistics and control limits by utilizing the calculations of step b and fixed values.
- d.
- For EWMA charts, use the particular and for the calculation of EWMA statistics given in Equation (7) and plot them over the specific control limits stated in Equation (8). For HWMA charts, exert the specific and to obtain HWMA statistics given by Equation (9) and plot them against their respective control limits in Equation (10). Likewise, for DHWMA control charts, utilize the specific and for getting DHWMA statistics from Equation (11) and plot them against the control limits in Equation (12).
- e.
- Iterate steps a–d several times to obtain the desired .
- f.
- If the desired is not attained, then change the prior random values and perform steps a–e repeatedly until the desired is achieved.
4.3. Analysis and Evaluation
4.3.1. Evaluation Based on Alterations in
4.3.2. Evaluation Based on Alterations in
4.3.3. Evaluation Based on Simultaneous Alterations in and
5. Illustrative Example
6. Summary, Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adegoke, N.A.; Abbasi, S.A.; Dawod, A.B.; Pawley, M.D. Enhancing the performance of the EWMA control chart for monitoring the process mean using auxiliary information. Qual. Reliab. Eng. Int. 2019, 35, 920–933. [Google Scholar] [CrossRef]
- Mahmood, T. Generalized linear model based monitoring methods for high-yield processes. Qual. Reliab. Eng. Int. 2020, 36, 1570–1591. [Google Scholar] [CrossRef]
- Adegoke, N.A.; Smith, A.N.; Anderson, M.J.; Sanusi, R.A.; Pawley, M.D. Efficient homogeneously weighted moving average chart for monitoring process mean using an auxiliary variable. IEEE Access 2019, 7, 94021–94032. [Google Scholar] [CrossRef]
- Alevizakos, V.; Koukouvinos, C. A double progressive mean control chart for monitoring Poisson observations. J. Comput. Appl. Math. 2020, 373, 112232. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Khoo, M.B. Poisson moving average versus c chart for nonconformities. Qual. Eng. 2004, 16, 525–534. [Google Scholar] [CrossRef]
- Borror, C.M.; Champ, C.W.; Rigdon, S.E. Poisson EWMA control charts. J. Qual. Technol. 1998, 30, 352–361. [Google Scholar] [CrossRef]
- Gan, F. Monitoring Poisson observations using modified exponentially weighted moving average control charts. Commun. Stat. Simul. Comput. 1990, 19, 103–124. [Google Scholar] [CrossRef]
- Testik, M.C.; McCullough, B.; Borrar, C.M. The effect of estimated parameters on Poisson EWMA control charts. Qual. Technol. Quant. Manag. 2006, 3, 513–527. [Google Scholar] [CrossRef]
- Zhang, L.; Govindaraju, K.; Lai, C.; Bebbington, M. Poisson DEWMA control chart. Commun. Stat. Simul. Comput. 2003, 32, 1265–1283. [Google Scholar] [CrossRef]
- Shu, L.; Jiang, W.; Wu, Z. Exponentially weighted moving average control charts for monitoring increases in Poisson rate. IIE Trans. 2012, 44, 711–723. [Google Scholar] [CrossRef]
- Yamauchi, T.; Lee Ho, L. Control charts for monitoring the ratio of two poisson rates. Qual. Reliab. Eng. Int. 2020, 36, 214–230. [Google Scholar] [CrossRef]
- Weiß, C.H. Detecting mean increases in Poisson INAR (1) processes with EWMA control charts. J. Appl. Stat. 2011, 38, 383–398. [Google Scholar] [CrossRef]
- Zhou, Q.; Zou, C.; Wang, Z.; Jiang, W. Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes. J. Am. Stat. Assoc. 2012, 107, 1049–1062. [Google Scholar] [CrossRef]
- Zhou, Q.; Shu, L.; Jiang, W. One-sided EWMA control charts for monitoring Poisson processes with varying sample sizes. Commun. Stat. Simul. Comput. 2016, 45, 6112–6132. [Google Scholar] [CrossRef]
- Sheu, S.-H.; Chiu, W.-C. Poisson GWMA control chart. Commun. Stat. Simul. Comput. 2007, 36, 1099–1114. [Google Scholar] [CrossRef]
- Chiu, W.C.; Sheu, S.H. Fast initial response features for Poisson GWMA control charts. Commun. Stat. Simul. Comput. 2008, 37, 1422–1439. [Google Scholar] [CrossRef]
- Abujiya, M.A.R.; Abbasi, S.A.; Riaz, M. A new EWMA control chart for monitoring Poisson observations. Qual. Reliab. Eng. Int. 2016, 32, 3023–3033. [Google Scholar] [CrossRef]
- Lucas, J.M. Counted data CUSUM’s. Technometrics 1985, 27, 129–144. [Google Scholar] [CrossRef]
- White, C.H.; Bert Keats, J.; Stanley, J. Poisson cusum versus c chart for defect data. Qual. Eng. 1997, 9, 673–679. [Google Scholar] [CrossRef]
- Abujiya, M.; Ramat, A. New cumulative sum control chart for monitoring Poisson processes. IEEE Access 2017, 5, 14298–14308. [Google Scholar] [CrossRef]
- Jiang, W.; Shu, L.; Tsui, K.-L. Weighted CUSUM control charts for monitoring Poisson processes with varying sample sizes. J. Qual. Technol. 2011, 43, 346–362. [Google Scholar] [CrossRef]
- Abbasi, S.A. Poisson progressive mean control chart. Qual. Reliab. Eng. Int. 2017, 33, 1855–1859. [Google Scholar] [CrossRef]
- Chiu, J.-E.; Kuo, T.-I. Attribute control chart for multivariate Poisson distribution. Commun. Stat. Simul. Comput. 2007, 37, 146–158. [Google Scholar] [CrossRef]
- He, S.; He, Z.; Wang, G.A. CUSUM control charts for multivariate Poisson distribution. Commun. Stat. Simul. Comput. 2014, 43, 1192–1208. [Google Scholar] [CrossRef]
- Laungrungrong, B.; Borror, C.M.; Montgomery, D.C. EWMA control charts for multivariate Poisson-distributed data. Int. J. Qual. Eng. Technol. 2011, 2, 185–211. [Google Scholar] [CrossRef]
- Raza, M.A.; Aslam, M. Design of control charts for multivariate Poisson distribution using generalized multiple dependent state sampling. Qual. Technol. Quant. Manag. 2019, 16, 629–650. [Google Scholar] [CrossRef]
- Amiri, A.; Koosha, M.; Azhdari, A. Profile monitoring for Poisson responses. In Proceedings of the 2011 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 6–9 December 2011; pp. 1481–1484. [Google Scholar]
- Maleki, M.R.; Castagliola, P.; Amiri, A.; Khoo, M.B. The effect of parameter estimation on phase II monitoring of poisson regression profiles. Commun. Stat. Simul. Comput. 2019, 48, 1964–1978. [Google Scholar] [CrossRef]
- Kuo, T.; Chiu, J. Regression-based limits for multivariate Poisson control chart. In Proceedings of the 2008 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 December 2008; pp. 2051–2055. [Google Scholar]
- Wen, H.; Liu, L.; Yan, X. Regression-adjusted Poisson EWMA control chart. Qual. Reliab. Eng. Int. 2021, 37, 1956–1964. [Google Scholar] [CrossRef]
- Alencar, A.P.; Lee Ho, L.; Albarracin, O.Y.E. CUSUM control charts to monitor series of negative binomial count data. Stat. Methods Med. Res. 2017, 26, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Mahmood, T.; Kinat, S. Memory type control charts with inverse-Gaussian response: An application to yarn manufacturing industry. Trans. Inst. Meas. Control. 2021, 43, 656–678. [Google Scholar] [CrossRef]
- Kinat, S.; Amin, M.; Mahmood, T. GLM-based control charts for the inverse Gaussian distributed response variable. Qual. Reliab. Eng. Int. 2020, 36, 765–783. [Google Scholar] [CrossRef]
- Mahmood, T.; Xie, M. Models and monitoring of zero-inflated processes: The past and current trends. Qual. Reliab. Eng. Int. 2019, 35, 2540–2557. [Google Scholar] [CrossRef]
- Urbieta, P.; Lee, H.O.L.; Alencar, A. CUSUM and EWMA control charts for negative binomial distribution. Qual. Reliab. Eng. Int. 2017, 33, 793–801. [Google Scholar] [CrossRef]
- Park, K.; Jung, D.; Kim, J.M. Control charts based on randomized quantile residuals. Appl. Stoch. Models Bus. Ind. 2020, 36, 716–729. [Google Scholar] [CrossRef]
- Mammadova, U.; Özkale, M.R. Profile monitoring for count data using Poisson and Conway–Maxwell–Poisson regression-based control charts under multicollinearity problem. J. Comput. Appl. Math. 2021, 388, 113275. [Google Scholar] [CrossRef]
- Marcondes Filho, D.; Sant’Anna, A.M.O. Principal component regression-based control charts for monitoring count data. Int. J. Adv. Manuf. Technol. 2016, 85, 1565–1574. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.M.; Jung, D. GLM-based statistical control r-charts for dispersed count data with multicollinearity between input variables. Qual. Reliab. Eng. Int. 2018, 34, 1103–1109. [Google Scholar] [CrossRef]
- Jamal, A.; Mahmood, T.; Riaz, M.; Al-Ahmadi, H.M. GLM-Based Flexible Monitoring Methods: An Application to Real-Time Highway Safety Surveillance. Symmetry 2021, 13, 362. [Google Scholar] [CrossRef]
- Skinner, K.R.; Montgomery, D.C.; Runger, G.C. Generalized linear model-based control charts for discrete semiconductor process data. Qual. Reliab. Eng. Int. 2004, 20, 777–786. [Google Scholar] [CrossRef]
- Skinner, K.R.; Montgomery, D.C.; Runger, G.C. Process monitoring for multiple count data using generalized linear model-based control charts. Int. J. Prod. Res. 2003, 41, 1167–1180. [Google Scholar] [CrossRef]
- Asgari, A.; Amiri, A.; Niaki, S.T.A. A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response. Int. J. Adv. Manuf. Technol. 2014, 72, 1243–1256. [Google Scholar] [CrossRef]
- Abbas, N.; Riaz, M.; Ahmad, S.; Abid, M.; Zaman, B. On the efficient monitoring of multivariate processes with unknown parameters. Mathematics 2020, 8, 823. [Google Scholar] [CrossRef]
- Abid, M.; Mei, S.; Nazir, H.Z.; Riaz, M.; Hussain, S. A mixed HWMA-CUSUM mean chart with an application to manufacturing process. Qual. Reliab. Eng. Int. 2020, 37, 618–631. [Google Scholar] [CrossRef]
- Abid, M.; Shabbir, A.; Nazir, H.Z.; Sherwani, R.A.K.; Riaz, M. A double homogeneously weighted moving average control chart for monitoring of the process mean. Qual. Reliab. Eng. Int. 2020, 36, 1513–1527. [Google Scholar] [CrossRef]
- Adegoke, N.A.; Abbasi, S.A.; Smith, A.N.; Anderson, M.J.; Pawley, M.D. A multivariate homogeneously weighted moving average control chart. IEEE Access 2019, 7, 9586–9597. [Google Scholar] [CrossRef]
- Raza, M.A.; Nawaz, T.; Han, D. On designing distribution-free homogeneously weighted moving average control charts. J. Test. Eval. 2020, 48, 3154–3171. [Google Scholar] [CrossRef]
- Riaz, M.; Abbasi, S.A.; Abid, M.; Hamzat, A.K. A New HWMA Dispersion Control Chart with an Application to Wind Farm Data. Mathematics 2020, 8, 2136. [Google Scholar] [CrossRef]
- Riaz, M.; Abid, M.; Shabbir, A.; Nazir, H.Z.; Abbas, Z.; Abbasi, S.A. A non-parametric double homogeneously weighted moving average control chart under sign statistic. Qual. Reliab. Eng. Int. 2020, 37, 1544–1560. [Google Scholar] [CrossRef]
- Yates, R.D.; Goodman, D.J. Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Haight, F.A. Handbook of the Poisson Distribution; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Pierce, D.A.; Schafer, D.W. Residuals in generalized linear models. J. Am. Stat. Assoc. 1986, 81, 977–986. [Google Scholar] [CrossRef]
- Abbas, N.; Abujiya, M.A.R.; Riaz, M.; Mahmood, T. Cumulative sum chart modeled under the presence of outliers. Mathematics 2020, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Abbas, Z.; Nazir, H.Z.; Riaz, M.; Zhang, X.; Li, Y. On Designing Non-Parametric EWMA Sign Chart under Ranked Set Sampling Scheme with Application to Industrial Process. Mathematics 2020, 8, 1497. [Google Scholar] [CrossRef]
- Chen, J.-H.; Lu, S.-L. A New Sum of Squares Exponentially Weighted Moving Average Control Chart Using Auxiliary Information. Symmetry 2020, 12, 1888. [Google Scholar] [CrossRef]
- Abbas, N.; Riaz, M.; Does, R.J. Mixed exponentially weighted moving average–cumulative sum charts for process monitoring. Qual. Reliab. Eng. Int. 2013, 29, 345–356. [Google Scholar] [CrossRef]
- Capizzi, G.; Masarotto, G. An adaptive exponentially weighted moving average control chart. Technometrics 2003, 45, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xie, M.; Zhou, M. Rank-based EWMA procedure for sequentially detecting changes of process location and variability. Qual. Technol. Quant. Manag. 2018, 15, 354–373. [Google Scholar] [CrossRef]
- Lucas, J.M.; Saccucci, M.S. Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics 1990, 32, 1–12. [Google Scholar] [CrossRef]
- Riaz, S.; Riaz, M.; Hussain, Z.; Abbas, T. Monitoring the performance of Bayesian EWMA control chart using loss functions. Comput. Ind. Eng. 2017, 112, 426–436. [Google Scholar] [CrossRef]
- Abbas, N. Homogeneously weighted moving average control chart with an application in substrate manufacturing process. Comput. Ind. Eng. 2018, 120, 460–470. [Google Scholar] [CrossRef]
- Alevizakos, V.; Chatterjee, K.; Koukouvinos, C. The extended homogeneously weighted moving average control chart. Qual. Reliab. Eng. Int. 2021, 37, 2134–2155. [Google Scholar] [CrossRef]
- Mahmood, T.; Iqbal, A.; Abbasi, S.A.; Amin, M. Efficient GLM-based control charts for Poisson processes. Qual. Reliab. Eng. Int. 2021. [Google Scholar] [CrossRef]
EWMA | HWMA | DHWMA | ||||
---|---|---|---|---|---|---|
R | LE1 | 3.783 | Lh1 | 7 | Ldh1 | 8.807 |
LE2 | 3.783 | Lh2 | 4.936 | Ldh2 | 8.807 | |
SR | LE1 | 2.686 | Lh1 | 2.766 | Ldh1 | 1.7385 |
LE2 | 2.686 | Lh2 | 2.766 | Ldh2 | 1.7385 |
Shift | EWMA | HWMA | DHWMA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | SR | R | SR | R | SR | |||||||
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 200.30 | 197.56 | 200.11 | 192.53 | 200.72 | 155.21 | 201.48 | 183.24 | 200.18 | 28.16 | 200.73 | 95.50 |
0.0000005 | 198.89 | 194.83 | 145.74 | 142.73 | 198.89 | 153.03 | 134.17 | 122.36 | 200.46 | 28.62 | 133.08 | 76.71 |
0.000001 | 204.99 | 201.90 | 95.91 | 94.36 | 200.68 | 154.80 | 85.38 | 77.62 | 200.07 | 28.65 | 76.00 | 45.75 |
0.0000025 | 201.42 | 197.27 | 42.48 | 41.66 | 204.36 | 162.10 | 37.75 | 33.30 | 200.32 | 29.07 | 27.28 | 16.14 |
0.000005 | 201.98 | 197.45 | 21.66 | 20.48 | 198.69 | 152.78 | 20.47 | 17.48 | 200.42 | 28.82 | 10.77 | 6.38 |
0.00001 | 199.27 | 193.77 | 11.23 | 9.92 | 199.02 | 152.93 | 11.05 | 9.36 | 199.83 | 28.67 | 4.19 | 2.25 |
0.00005 | 199.98 | 198.76 | 3.68 | 2.81 | 198.01 | 152.17 | 3.64 | 2.85 | 200.19 | 28.42 | 1.59 | 0.50 |
0.0005 | 185.27 | 182.98 | 1.50 | 0.79 | 184.90 | 140.58 | 1.44 | 0.81 | 195.80 | 27.75 | 1.20 | 0.40 |
0 | 196.43 | 194.35 | 202.66 | 193.58 | 200.98 | 155.92 | 198.10 | 181.73 | 199.99 | 28.68 | 199.82 | 96.20 |
0.0000005 | 201.47 | 197.90 | 146.90 | 142.62 | 197.77 | 153.54 | 132.18 | 121.61 | 199.41 | 28.35 | 131.76 | 76.82 |
0.000001 | 201.21 | 197.32 | 97.14 | 95.43 | 199.06 | 154.11 | 85.01 | 76.44 | 200.29 | 28.74 | 76.11 | 46.67 |
0.0000025 | 202.73 | 198.56 | 42.41 | 41.40 | 197.94 | 155.06 | 38.32 | 33.85 | 200.46 | 28.34 | 27.27 | 16.38 |
0.000005 | 202.70 | 196.03 | 21.85 | 20.24 | 201.45 | 153.51 | 19.77 | 17.15 | 200.32 | 28.55 | 10.86 | 6.37 |
0.00001 | 200.78 | 195.53 | 11.32 | 10.20 | 199.34 | 156.31 | 10.97 | 9.25 | 200.12 | 28.67 | 4.24 | 2.24 |
0.00005 | 199.72 | 195.51 | 3.68 | 2.73 | 199.56 | 156.37 | 3.67 | 2.88 | 200.41 | 28.75 | 1.58 | 0.50 |
0.0005 | 184.43 | 180.99 | 1.49 | 0.78 | 186.49 | 142.91 | 1.44 | 0.81 | 195.59 | 27.78 | 1.21 | 0.40 |
Shift | EWMA | HWMA | DHWMA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | SR | R | SR | R | SR | |||||||
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 200.14 | 196.16 | 201.74 | 191.29 | 201.90 | 156.34 | 200.78 | 183.48 | 199.94 | 28.83 | 199.87 | 97.03 |
0.00000005 | 203.31 | 199.50 | 175.05 | 167.66 | 202.61 | 155.76 | 164.11 | 149.41 | 199.88 | 28.65 | 171.99 | 91.65 |
0.0000001 | 202.51 | 200.28 | 138.87 | 135.78 | 198.28 | 153.52 | 126.51 | 115.16 | 200.50 | 28.99 | 129.64 | 77.71 |
0.00000015 | 200.51 | 196.32 | 112.28 | 111.56 | 201.04 | 158.15 | 99.76 | 90.61 | 200.41 | 28.83 | 97.03 | 61.19 |
0.0000003 | 198.69 | 196.46 | 67.03 | 65.81 | 199.21 | 155.28 | 60.56 | 54.37 | 199.69 | 28.51 | 50.54 | 32.26 |
0.000001 | 199.89 | 194.59 | 23.30 | 21.69 | 198.74 | 153.55 | 21.89 | 18.98 | 200.30 | 28.34 | 11.48 | 7.12 |
0.00001 | 201.19 | 196.18 | 4.39 | 3.50 | 202.03 | 157.18 | 4.47 | 3.62 | 200.18 | 28.16 | 1.66 | 0.50 |
0.0001 | 183.82 | 181.25 | 1.75 | 1.04 | 184.40 | 142.18 | 1.73 | 1.10 | 195.74 | 27.70 | 1.31 | 0.46 |
0 | 198.39 | 192.64 | 201.09 | 194.72 | 197.18 | 153.36 | 201.01 | 184.64 | 200.16 | 28.73 | 199.19 | 95.66 |
0.00000005 | 203.13 | 200.23 | 172.29 | 170.78 | 200.93 | 154.26 | 163.21 | 152.95 | 200.18 | 28.23 | 171.51 | 91.44 |
0.0000001 | 202.01 | 197.53 | 137.85 | 135.22 | 202.95 | 157.51 | 123.82 | 113.51 | 200.06 | 28.36 | 131.38 | 76.47 |
0.00000015 | 199.36 | 194.81 | 112.78 | 110.66 | 199.94 | 154.91 | 100.46 | 91.45 | 199.74 | 28.52 | 96.65 | 61.40 |
0.0000003 | 199.37 | 194.32 | 66.90 | 64.74 | 201.29 | 155.11 | 59.67 | 54.14 | 199.67 | 28.69 | 50.25 | 31.29 |
0.000001 | 203.90 | 201.18 | 23.99 | 22.84 | 198.49 | 152.52 | 22.13 | 19.49 | 200.50 | 28.58 | 11.52 | 7.04 |
0.00001 | 200.41 | 196.42 | 4.47 | 3.56 | 198.20 | 153.96 | 4.37 | 3.57 | 199.89 | 28.55 | 1.66 | 0.50 |
0.0001 | 182.13 | 178.22 | 1.76 | 1.07 | 187.37 | 144.56 | 1.69 | 1.09 | 195.53 | 27.80 | 1.30 | 0.46 |
Shift | EWMA | HWMA | DHWMA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | SR | R | SR | R | SR | |||||||
ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | ARL | SDRL | |
0 | 199.59 | 197.78 | 200.86 | 189.18 | 198.53 | 155.62 | 196.38 | 180.34 | 200.46 | 28.75 | 200.76 | 96.81 |
0.0000005 | 199.05 | 194.44 | 36.97 | 35.47 | 198.58 | 153.84 | 33.16 | 29.02 | 199.90 | 28.76 | 22.38 | 13.65 |
0.000001 | 203.53 | 200.27 | 19.89 | 18.82 | 199.57 | 153.63 | 18.79 | 16.52 | 200.03 | 28.72 | 8.83 | 5.33 |
0.000005 | 199.21 | 193.84 | 5.77 | 4.76 | 199.33 | 157.21 | 5.82 | 4.79 | 200.02 | 28.62 | 1.93 | 0.72 |
0.00005 | 194.40 | 189.60 | 2.00 | 1.29 | 193.47 | 146.96 | 1.91 | 1.30 | 198.66 | 28.34 | 1.35 | 0.48 |
0.0005 | 44.50 | 39.63 | 1.21 | 0.49 | 53.00 | 35.83 | 1.16 | 0.44 | 122.78 | 23.60 | 1.09 | 0.29 |
0 | 199.26 | 195.76 | 200.67 | 191.52 | 201.09 | 154.94 | 199.70 | 181.95 | 200.19 | 29.03 | 199.03 | 96.55 |
0.0000005 | 204.28 | 198.90 | 36.98 | 35.66 | 198.95 | 153.08 | 33.38 | 29.48 | 199.58 | 28.92 | 22.47 | 13.81 |
0.000001 | 200.66 | 199.06 | 20.03 | 18.55 | 198.39 | 153.35 | 18.85 | 16.13 | 200.07 | 28.63 | 8.69 | 5.36 |
0.000005 | 199.27 | 195.16 | 5.85 | 4.94 | 201.82 | 157.47 | 5.80 | 4.88 | 200.30 | 28.41 | 1.92 | 0.72 |
0.00005 | 194.31 | 190.36 | 2.01 | 1.28 | 194.14 | 152.72 | 1.93 | 1.33 | 198.41 | 28.35 | 1.37 | 0.48 |
0.0005 | 43.86 | 39.51 | 1.21 | 0.47 | 53.16 | 35.78 | 1.17 | 0.48 | 122.61 | 23.59 | 1.09 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, A.; Mahmood, T.; Ali, Z.; Riaz, M. On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process. Symmetry 2022, 14, 122. https://doi.org/10.3390/sym14010122
Iqbal A, Mahmood T, Ali Z, Riaz M. On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process. Symmetry. 2022; 14(1):122. https://doi.org/10.3390/sym14010122
Chicago/Turabian StyleIqbal, Anam, Tahir Mahmood, Zulfiqar Ali, and Muhammad Riaz. 2022. "On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process" Symmetry 14, no. 1: 122. https://doi.org/10.3390/sym14010122
APA StyleIqbal, A., Mahmood, T., Ali, Z., & Riaz, M. (2022). On Enhanced GLM-Based Monitoring: An Application to Additive Manufacturing Process. Symmetry, 14(1), 122. https://doi.org/10.3390/sym14010122