A Vibration Similarity Model of Converter Transformers and Its Verification Method
Abstract
:1. Introduction
2. Similarity Principle
2.1. Similarity of Electromagnetic Field Parameters
2.2. Similarity Analysis of Vibration Parameters
3. Multi Physical Field Model of Converter Transformer and Its Similarity Model
3.1. Physical Model of Converter Transformer
3.2. Converter Transformer Scale Model
4. Results and Discussion
4.1. Magnetic Flux Density Distribution
4.2. Stress Analysis
4.2.1. Stress Analysis of Iron Core
4.2.2. Winding Stress Analysis
4.2.3. Overall Stress Analysis of Converter Transformer
4.3. Deformation Analysis of Winding and Iron Core
4.4. Vibration Signal Analysis
4.5. Vibration Signal Restoration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hammons, T.; Woodford, D.; Loughtan, J.; Chamia, M.; Donahoe, J.; Povh, D.; Bisewski, B.; Long, W. Role of HVDC transmission in future energy development. IEEE Power Eng. Rev. 2000, 20, 10–25. [Google Scholar] [CrossRef]
- Zhao, Y.; Crossley, P. Impact of DC bias on differential protection of converter transformers. Int. J. Electr. Power Energy Syst. 2020, 115, 105426. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Jiang, F.; Wang, Y.; Zhang, C.; Hui, Y. Electromagneto-mechanical numerical analysis and experiment of transformer influenced by DC bias considering core magnetostriction. J. Mater. Sci. Mater. Electron. 2020, 31, 16420–16428. [Google Scholar] [CrossRef]
- Weiser, B.; Pfützner, H.; Anger, J. Relevance of magnetostriction and forces for the generation of audible noise of transformer cores. IEEE Trans. Magn. 2000, 36, 3759–3777. [Google Scholar] [CrossRef]
- Weiser, B.; Hasenzagl, A.; Booth, T.; Pfützner, H. Mechanisms of noise generation of model transformer cores. J. Magn. Magn. Mater. 1996, 160, 207–209. [Google Scholar] [CrossRef]
- Kitagawa, W.; Ishihara, Y.; Todaka, T.; Nakasaka, A. Analysis of structural deformation and vibration of a transformer core by using magnetic property of magnetostriction. Electr. Eng. Jpn. 2010, 172, 19–26. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Zhang, L.; Lou, J.; Zou, L. Modelling methodology for transformer core vibrations based on the magnetostrictive properties. IET Electr. Power Appl. 2012, 6, 604–610. [Google Scholar] [CrossRef]
- Pu, Z.-H.; Ruan, J.-J.; Du, Z.-Y.; Zhang, Y.-D.; Li, J.-L.; Xie, Q.-J.; Tan, D. Analysis of Voltage Distribution Characteristics in UHVDC Converter Transformer Winding Based on the Reduced-Scale Model. IEEE Trans. Magn. 2014, 50, 1–5. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Cheng, Z.; Tian, C.; Han, Y. Study on Vibration of Iron Core of Transformer and Reactor Based on Maxwell Stress and Anisotropic Magnetostriction. IEEE Trans. Magn. 2018, 55, 1–5. [Google Scholar] [CrossRef]
- Moses, A.J.; Anderson, P.I.; Phophongviwat, T. Localized Surface Vibration and Acoustic Noise Emitted from Laboratory-Scale Transformer Cores Assembled from Grain-Oriented Electrical Steel. IEEE Trans. Magn. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Sayed, A.M.; Abouelatta, M.A.; Badawi, M.; Mahmoud, K.; Lehtonenm, M.; Darwish, M.M.F. Novel accurate modeling of dust loaded wire-duct precipitators using FDM-FMG method on one fine computational domains. Electr. Power Syst. Res. 2022, 203, 107634. [Google Scholar] [CrossRef]
- Zalhaf, A.S.; Mansour, D.-E.A.; Han, Y.; Yang, P.; Yang, P.; Darwish, M.M.F. Numerical and Experimental Analysis of the Transient Behavior of Wind Turbines when Two Blades are Simultaneously Struck by Lightning. IEEE Trans. Instrum. Meas. 2021. [Google Scholar] [CrossRef]
- Abouelatta, M.A.; Ward, S.A.; Sayed, A.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique. Electr. Power Syst. Res. 2021, 199, 107370. [Google Scholar] [CrossRef]
- Abouelatta, M.A.; Ward, S.A.; Sayed, A.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Fast Corona Discharge Assessment Using FDM integrated With Full Multigrid Method in HVDC Transmission Lines Considering Wind Impact. IEEE Access 2020, 8, 225872–225883. [Google Scholar] [CrossRef]
- Garcia, B.; Burgos, J.C.; Alonso, A. Transformer Tank Vibration Modeling as a Method of Detecting Winding Deformations-Part I: Theoretical Foundation. IEEE Trans. Power Deliv. 2006, 21, 157–163. [Google Scholar] [CrossRef]
- Garcia, B.; Burgos, J.C.; Alonso, A. Transformer Tank Vibration Modeling as a Method of Detecting Winding Deformations-Part II: Experimental Verification. IEEE Trans. Power Deliv. 2006, 21, 164–169. [Google Scholar] [CrossRef]
Length | Area | Frequency | Current | Voltage | Resistance | Magnetic Flux Density | |
---|---|---|---|---|---|---|---|
Original model | l | S | f | I | U | R | B |
Similarity model | kl | k2S | k−2f | k2I | kU | k−1R | kB |
Lorentz Force | Magnetostrictive Force | Winding Vibration Acceleration | Core Vibration Acceleration | |
---|---|---|---|---|
Original model | Fl | Fc | al | ac |
Similarity model | k4Fl | k2Fc | k4al | k−3ac |
Material Parameters | Winding | Iron Core | Air Domain |
---|---|---|---|
Relative permeability | 0.98 | 8000 | 1 |
Poisson’s ratio | 0.35 | 0.45 | 0.38 |
Young’s modulus | 1.1 × 1011 Pa | 1.2 × 1011 Pa | 1.7 × 109 Pa |
Density | 7870 kg·m−3 | 8960 kg·m−3 | 1.29 kg·m−3 |
Parameter | Before Similarity | After Similarity |
---|---|---|
Model width | 4 m | 0.4 m |
Primary winding resistance | 1.68 Ω | 16.8 Ω |
Secondary winding resistance | 0.2 Ω | 2 Ω |
Supply voltage | 288 kV | 28.8 kV |
Power voltage frequency | 50 Hz | 5000 Hz |
Transient study scope | 0–0.05 s | 0–0.0005 s |
Transient study step | 5.0 ×10−4 s | 5.0 ×10−6 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, L.; Sun, Y.; Wang, G.; Zou, L. A Vibration Similarity Model of Converter Transformers and Its Verification Method. Symmetry 2022, 14, 143. https://doi.org/10.3390/sym14010143
Wang H, Zhang L, Sun Y, Wang G, Zou L. A Vibration Similarity Model of Converter Transformers and Its Verification Method. Symmetry. 2022; 14(1):143. https://doi.org/10.3390/sym14010143
Chicago/Turabian StyleWang, Hao, Li Zhang, Youliang Sun, Guan Wang, and Liang Zou. 2022. "A Vibration Similarity Model of Converter Transformers and Its Verification Method" Symmetry 14, no. 1: 143. https://doi.org/10.3390/sym14010143
APA StyleWang, H., Zhang, L., Sun, Y., Wang, G., & Zou, L. (2022). A Vibration Similarity Model of Converter Transformers and Its Verification Method. Symmetry, 14(1), 143. https://doi.org/10.3390/sym14010143