A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform
Abstract
:1. Introduction
2. Definitions and Theorems
2.1. Preliminaries
- where and β are nonzero constants.
- where is the Laplace transform of .
2.2. New Results Related to the ARA Transform
- where
3. Fractional Power Series
- i.
- If the ARA transform of order two for the function has the series representation
- ii.
- If the ARA transform of order two for the function g(t) has the series representation
- iii.
- The inverse of the ARA transform of order two for the fractional power series given in Theorem 4 is
4. Constructing the ARA-RPS Solution of the Fractional Neutral Pantograph Equation
5. Some Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qazza, A.; Hatamleh, R.; Alodat, N. About the Solution Stability of Volterra Integral Equation with Random Kernel. Far East J. Math. Sci. 2016, 100, 671–680. [Google Scholar] [CrossRef]
- Pedrayes, J.F.; Melero, M.G.; Norniella, J.G.; Cabanas, M.F.; Orcajo, G.A.; González, A.S. Supercapacitors in Constant-Power Applications: Mathematical Analysis for the Calculation of Temperature. Appl. Sci. 2021, 11, 10153. [Google Scholar] [CrossRef]
- Qazza, A.; Hatamleh, R. The existence of a solution for semi-linear abstract differential equations with infinite B chains of the characteristic sheaf. Int. J. Appl. Math. 2018, 31, 611–620. [Google Scholar] [CrossRef]
- Arqub, O.A.; Al-Smadi, M.; Gdairi, R.A.; Alhodaly, M.; Hayat, T. Implementation of reproducing kernel Hilbert algorithm for pointwise numerical solvability of fractional Burgers’ model in time-dependent variable domain regarding constraint boundary condition of Robin. Results Phys. 2021, 24, 104210. [Google Scholar] [CrossRef]
- Ahmad, I.; Shah, K.; Rahman, G.U.; Baleanu, D. Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations. Math. Methods Appl. Sci. 2020, 43, 8669–8682. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Y.; Zhang, M.; Zhang, L.; Li, H. Facile Fabrication of Polyaniline/Graphene Composite Fibers as Electrodes for Fiber-Shaped Supercapacitors. Appl. Sci. 2021, 11, 8690. [Google Scholar] [CrossRef]
- Abu-Gdairi, R.; Hasan, S.; Al-Omari, S.; Al-Smadi, M.; Momani, S. Attractive Multistep Reproducing Kernel Approach for Solving Stiffness Differential Systems of Ordinary Differential Equations and Some Error Analysis. CMES 2021. in editing. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Almeida, R.; Tavares, D.; Torres, D. The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publisher: Boston, MA, USA, 1994. [Google Scholar]
- Jafari, H.; Daftardar–Gejji, V. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 2006, 180, 488–497. [Google Scholar] [CrossRef]
- Saadeh, R. Numerical solutions of fractional convection-diffusion equation using finite-difference and finite-volume schemes. J. Math. Comput. Sci. 2021, 11, 7872–7891. [Google Scholar]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Kashkari, B.S.; El–Tantawy, S.A.; Salas, A.H.; El-Sherif, L.S. Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma. Chaos Solitons Fractals 2020, 130, 109457. [Google Scholar] [CrossRef]
- Saadeh, R. Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 2021, 60, 4583–4591. [Google Scholar] [CrossRef]
- Khandaqji, M.; Burqan, A. Results on sequential conformable fractional derivatives with applications. J. Comput. Anal. Appl. 2021, 29, 1115–1125. [Google Scholar]
- Abu-Gdairi, R.; Al-Smadi, M.; Gumah, G. An Expansion Iterative Technique for Handling Fractional Differential Equations Using Fractional Power Series Scheme. J. Math. Stat. 2015, 11, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Khaminsou, B.; Sudsutad, W.; Thaiprayoon, C.; Alzabut, J.; Pleumpreedaporn, S. Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions. Fractal Fract. 2021, 5, 251. [Google Scholar] [CrossRef]
- Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, M. A new efficient technique using Laplace transforms and smooth expansions to construct a series solutionsto the time-fractional Navier-Stokes equations. Alex. Eng. J. 2021, in press. [Google Scholar]
- Abbas, M.I.; Ragusa, M.A. On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. A class of linear non-homogenous higher order matrix fractional differential equations: Analytical solutions and new technique. Fract. Calc. Appl. Anal. 2020, 23, 356–377. [Google Scholar] [CrossRef]
- Shqair, M.; El-Ajou, A.; Nairat, M. Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method. Mathematics 2019, 7, 633. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Asjad, M.; Singh, J. Application of novel fractional derivative to heat and mass transfer analysis for the slippage flow of viscous fluid with single-wall carbon nanotube subject to Newtonian heating. Math. Meth. Appl Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. A New Integral Transform: ARA Transform and Its Properties and Applications. Symmetry 2020, 12, 925. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R. A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform. Mathematics 2021, 9, 3039. [Google Scholar] [CrossRef]
- Mahmood, S.; Shah, R.; Khan, H.; Arif, M. Laplace Adomian decomposition method for multi-dimensional time fractional model of Navier-Stokes equation. Symmetry 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, J.; Kumar, S. A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 2015, 17, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Eriqat, T.; El-Ajou, A.; Moa’ath, N.O.; Al-Zhour, Z.; Momani, S. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
- Balachandran, K.; Kiruthika, S. Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Bellen, A.; Zennaro, M. Numerical Methods for Delay Differential Equations. In Numerical Mathematics and Scientific Computation; The Clarendon Press: Oxford, UK; University Press: New York, NY, USA, 2003. [Google Scholar]
- Chen, X.; Wang, L. The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Math. Appl. 2010, 59, 2696–2702. [Google Scholar] [CrossRef] [Green Version]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 2017, 309, 493–510. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Atangana, A.; Hajikhah, S. Solving fractional pantograph delay equations by an effective computational method. Math. Comput. Simul. 2020, 177, 295–305. [Google Scholar] [CrossRef]
- Ghasemi, M.; Fardi, M.; Ghaziani, R.K. Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space. Appl. Math. Comput. 2015, 268, 815–831. [Google Scholar] [CrossRef]
t | Two-Stage Order-One Runge-Kutta | Variational Iterative (k = 6) | Chebyshev Polynomials (k = 16) | ARA-RPS | |
---|---|---|---|---|---|
(k = 6) | (k = 16) | ||||
0.2 | 1.49 × 10−3 | 2.14 × 10−3 | 5.24 × 10−9 | 1.73 × 10−8 | 1.05 × 10−17 |
0.4 | 2.16 × 10−3 | 2.84 × 10−3 | 3.38 × 10−9 | 2.15 × 10−6 | 4.71 × 10−17 |
0.6 | 2.31 × 10−3 | 2.67 × 10−3 | 3.12 × 10−9 | 3.58 × 10−5 | 5.27 × 10−17 |
0.8 | 2.17 × 10−3 | 2.04 × 10−3 | 8.41 × 10−9 | 2.61 × 10−4 | 1.05 × 10−15 |
1.0 | 1.68 × 10−3 | 1.22 × 10−3 | 5.43 × 10−9 | 1.21 × 10−3 | 4.51 × 10−14 |
t | α = 0.70 | α = 0.8 | α = 0.9 | α = 1.0 |
---|---|---|---|---|
0.2 | 2.42 × 10−4 | 3.24 × 10−5 | 4.2 × 10−6 | 5.4 × 10−7 |
0.4 | 4.44 × 10−4 | 9.03 × 10−4 | 1.78 × 10−4 | 3.45 × 10−5 |
0.6 | 2.44 × 10−2 | 6.32 × 10−3 | 1.58 × 10−3 | 3.93 × 10−4 |
0.8 | 8.16 × 10−2 | 2.51 × 10−2 | 7.47 × 10−3 | 2.20 × 10−3 |
1.0 | 2.08 × 10−1 | 7.34 × 10−2 | 2.49 × 10−2 | 8.4 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burqan, A.; Saadeh, R.; Qazza, A. A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform. Symmetry 2022, 14, 50. https://doi.org/10.3390/sym14010050
Burqan A, Saadeh R, Qazza A. A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform. Symmetry. 2022; 14(1):50. https://doi.org/10.3390/sym14010050
Chicago/Turabian StyleBurqan, Aliaa, Rania Saadeh, and Ahmad Qazza. 2022. "A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform" Symmetry 14, no. 1: 50. https://doi.org/10.3390/sym14010050
APA StyleBurqan, A., Saadeh, R., & Qazza, A. (2022). A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform. Symmetry, 14(1), 50. https://doi.org/10.3390/sym14010050