Next Article in Journal
Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach
Next Article in Special Issue
A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation
Previous Article in Journal
On Modified Second Paine–de Hoog–Anderssen Boundary Value Problem
Previous Article in Special Issue
Integral Representation and Explicit Formula at Rational Arguments for Apostol–Tangent Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Asymptotic Approximation of the Apostol-Tangent Polynomials Using Fourier Series

by
Cristina B. Corcino
1,2,
Baby Ann A. Damgo
1,
Joy Ann A. Cañete
3 and
Roberto B. Corcino
1,2,*
1
Research Institute for Computational Mathematics and Physics, Cebu Normal University, Osmeña Boulevard, Cebu City 6000, Philippines
2
Mathematics Department, Cebu Normal University, Osmeña Boulevard, Cebu City 6000, Philippines
3
Department of Mathematics and Physics, Visayas State University, Baybay City 6521, Philippines
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(1), 53; https://doi.org/10.3390/sym14010053
Submission received: 22 November 2021 / Revised: 15 December 2021 / Accepted: 15 December 2021 / Published: 1 January 2022

Abstract

:
Asymptotic approximations of the Apostol-tangent numbers and polynomials were established for non-zero complex values of the parameter λ . Fourier expansion of the Apostol-tangent polynomials was used to obtain the asymptotic approximations. The asymptotic formulas for the cases λ = 1 and λ = 1 were explicitly considered to obtain asymptotic approximations of the corresponding tangent numbers and polynomials.

1. Introduction

The tangent polynomials T n   z of a degree of n with a complex argument z are defined by the generating function (see [1,2]).
n = 0 T n z w n n !   =   2 e 2 w + 1 e z w ,               w   < π 2
These polynomials can be expressed in polynomial form as
T n z   =   k = 0 n n k   T k   z n k
where   T k denotes the tangent numbers defined by
tan w   =   n = 0   1 n + 1 T 2 n + 1 w 2 n + 1 2 n + 1 !
It is worth mentioning that tangent numbers are the odd indices of the numbers A n of alternating permutations known as the Euler zigzag numbers. The first few values of these numbers are as follows:
T 0   =   1 ,       T 1 = 1 ,       T 3   =   2 ,       T 5   =   16 ,       T 7 = 272 ,       T 9 = 7936 ,       T 11 = 353792 .
Clearly, T n   : = T n 0 for n     .
Several mathematicians were attracted to work on tangent polynomials because of the significant properties that they possessed in the field of mathematics and physics (see [3,4,5,6]). Analogues, explicit identities, and symmetric properties for tangent polynomials were derived in [2,7,8]. Some interesting Apostol analogues of the classical Bernoulli, Euler, and Genocchi polynomials were investigated by Apostol [9], Corcino, Lou, Srivastava and Araci (see [10,11,12,13,14,15,16,17]). These analogues are called the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi polynomials of order m defined by the following relations, respectively, (see [18]): For λ   \ 0 and m   Z + ,
n   =   0 B n m z ; λ w n n !   =   w λ e w 1 m e w z , w   <   2 π   w h e n   λ   =   1
a n d   w + log λ   <   2 π     w h e n   λ 1  
n   =   0 E n m z ; λ w n n !   =   2 λ e w + 1 m e w z , w   <   π     w h e n   λ   =   1
a n d   w + log λ   <   π     w h e n   λ 1
n   =   0 G n m z ; λ w n n !   =   2 w λ e w + 1 m e w z , w   <   π   w h e n   λ   =   1
a n d   w + log λ   <   π     w h e n   λ 1
when m   =   1 , the above Equations (3)–(5) give the generating functions for the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi polynomials, respectively (see [19]). We extend the tangent polynomials as follows.
The Apostol-tangent polynomials T n x ; λ in z are defined by means of the generating function
n   =   0 T n x ; λ t n n !   =   2 λ e 2 t + 1 e x t ,     2 t + log λ < π
when λ   =   1 , the Equation reduces to the tangent polynomials T n x   =   T n x ; 1 .
Lopez and Temme [20] used the Fourier series to establish the asymptotic approximations of higher-order Bernoulli and Euler polynomials. C.B. Corcino and R.B. Corcino [21] derived the asymptotics of higher-order Genocchi polynomials by employing the method in [19,22,23]. In the study of Navas et al. [24], Fourier expansion is used to obtain the asymptotic estimates for Apostol–Bernoulli and Apostol–Euler polynomials. In this paper, the asymptotic expansion of Apostol-tangent polynomials is derived using the method of Navas et al. [24].

2. Asymptotic Approximations

Let T λ   =   1 2 2 k 1 π i log λ :   k be the set of poles of the generating function Equation (6). The Fourier series expansion of the Apostol-tangent polynomials in terms of poles in T λ is given in the following theorem:
Theorem 1. 
Let λ \ 0 .   For n 1 ,   0 x 1 ,
T n x ; λ n ! = 2 n + 1 λ x / 2 k ϵ   e 1 2 2 k 1 π i x 2 k 1 π i log λ n + 1     = 1 λ x / 2 k ϵ   e 1 2 2 k 1 π i x 1 2 2 k 1 π i log λ n + 1
where the logarithm is taken to be the principal branch.
Proof. 
Consider the integral C N f n z d z   where
f n z = 2 e x z λ e 2 z + 1 z n + 1
and the circle C N is a circle about the origin of radius 1 2 2 N 1 + ϵ π ,   Ν +   with ϵ being a fixed real number such that ϵ π i ± log λ   0   m o d   π i .
The function f n   z has poles at z = 0 of order n + 1 and at   z k = 1 2 2 k 1 π i log λ ,   k . The poles z k are simple poles. Using the Cauchy Residue Theorem,
C N   f n z   d z = 2 π i   R e s   f n z ,   z = 0 + 2 π i k ϵ Z ,   k < N   R e s   f n   z , z = z k .
We observe that, using the basic property of integration,
C N   2 e x z     d z λ e 2 z + 1 z n + 1   C N   2 e x z d z λ e 2 z + 1 z n + 1 .
For 0 x 1 , λ e 2 z + 1 > λ e 2 z . Let z = a + b i ,
e x z λ e 2 z + 1 = e x a + b i λ e 2 z + 1 = e a x λ e 2 z + 1 e x z λ e 2 z 1 λ .
Thus,
C N   2 e x z d z λ e 2 z + 1 z n + 1     2 λ C N   d z z n + 1 = 2 n + 1 λ 2 N 1 + ϵ π ) ) n .
As N ,   the last expression goes to 0. Hence, as N ,   n 1 ,
C N   2 e x z λ e 2 z + 1 z n + 1   d z 0 .
This implies that
0 = R e s   f n z ,   z = 0 + k ϵ Z ,     R e s   f n   z , z = z k .
Now, the first residue R e s   f n z , z = 0 is given as
R e s f n z , z = 0 = lim z 0 1 n !   d n d z n z 0 n + 1 1 z n + 1 2 e x z λ e 2 z + 1 = lim z 0 1 n !   d n d z n   2 e x z λ e 2 z + 1 = lim z 0 1 n !   d n d z n   l = 0 T l x ; λ z l l ! = lim z 0 1 n !   l = n T l x ; λ z l n l n ! .
Note that the limit of each term of the expansion is 0   as   z 0 except the term when l = n . This gives
R e s   f n z , z = 0 = T n x ; λ n ! .
On the other hand, the residue R e s   f n z ,   z = z k is given by
R e s   f n z , z = z k = lim z z k z z k   1 z n + 1 2 e x z λ e 2 z + 1
= 2 e x z k z k n + 1 lim z z k z z k λ e 2 z + 1 = e x 2 z k λ z k n + 1 . Since   z k = 1 2 2 k 1 π i log λ ,
Res   f n z , z = z k = e x 2 1 2   2 k 1 π i log λ λ 1 2 2 k 1 π i log λ   n + 1 = 2 n + 1     e   2 k 1 2 1 x π i λ   x 2   2 k 1 π i log λ   n + 1 .
Combining these residues gives,
0 = T n x   ;   λ n ! + k   2 n + 1     e   2 k 1 2 1 x π i λ   x 2   2 k 1 π i log λ   n + 1  
Hence,
T n x ; λ = 2 n + 1   n ! λ x 2 k   e   2 k 1 2 1 x π i   2 k 1 π i log λ   n + 1   .  
Corollary 1. 
Let λ \ 0 .   For n 1 , the Fourier series of the Apostol-tangent numbers is given by
T n 0 ; λ n ! = k   1 1 2 2 k 1 π i log λ n + 1 ,
where the logarithm is taken to be the principal branch.
Proof. 
This follows from Theorem 1 by taking x = 0 .
Proceeding as in [20], ordering of the poles of the generating function Equation (6) is carried out in the following lemma.
Lemma 1. 
Let u k = 1 2 2 k 1 π i log λ with k , λ \ 0 and γ = log λ / 2 π i , where the logarithm is taken to be the principal branch.
(a)
If I m   λ > 0 ,   t h e n   0 < e γ < 1 2   , and for k 1 ,
u 1   <   u 0   <   u 2   <   u 1   <     <   u k   <   u k + 2   <  
(b)
If I m   λ < 0 ,   t h e n 1 2 < e λ < 0 ,   and for k 1 ,
u 0   <   u 1   <   u 1   <   u 2   <   u 2   <     <   u k   <   u k + 1   <  
(c)
If λ > 0   p o s i t i v e   r e a l   n u m b e r ,   then e   γ = 0 , and for k 1 ,
u 0   =   u 1   <   u 1   =   u 2   <   u 2   =   u 3   <   u 3   =   u 4   <     <   u k   =   u k + 1   <   u k + 1   =   u k + 2   <
(d)
If λ < 0   n e g a t i v e   r e a l   n u m b e r ,   t h e n   e   γ   =   1 2 , and for k 1 ,
u 1   <   u 0   =   u 2   <   u 1   =   u 3   <   u 2   =   u 4   <   <   u k   =   u k + 2   = <
Moreover,  u k     π k 1   i f   k     1 .
Proof. 
With the logarithm taken to be the principal branch,   γ   as   a   function   of   λ   maps λ \ 0 to the strip 1 2 < e   γ 1 2 (see [20]). To see this, write
γ = θ 2 π i l n λ 2 π
where θ = A r g   λ , from which we have
e   γ = θ 2 π   a n d   Im   γ = l n λ 2 π .
with π < θ π , we have
π 2 π e   γ = θ 2 π π 2 π 1 2 < e   γ   1 2
where e   γ = 0 when λ > 0 and e   γ = 1 2 when λ < 0 . If Im   λ > 0 , then 0 < θ < π . Hence, 0 < e   γ < 1 2 . On the other hand, if Im   λ < 0 , then π < θ < 0 . Hence, 1 2 < e   γ < 0 .
To verify the chains Equations (9)–(12), let x = e   γ and y = Im   γ . Then for k ,
u k = 1 2 2 k 1 π i log λ = k 1 2 π i log λ 2 = π i k 1 2 log λ 2 π i = π i k 1 2 x + i y = π i k 1 2 x + y = π k 1 2 x 2 + y 2
Now, we consider two cases:
Case 1. 
I m   λ > 0 . Then 0 < x < 1 2 and
u 0   =   π 1 2 x 2 + y 2   =   π 1 2 + x 2 + y 2 u 1   =   π 1 2 x 2 + y 2 u 2   =   π 3 2 x 2 + y 2 u 3   =   π 5 2 x 2 + y 2 u 1   =   π 3 2 x 2 + y 2   =   π 3 2 + x 2 + y 2 u 2   =   π 5 2 x 2 + y 2   =   π 5 2 + x 2 + y 2 u 3   =   π 7 2 x 2 + y 2   =   π 7 2 + x 2 + y 2
From this, one can see that the order of magnitude of u k ,   k given in Equation (9) holds.
Case 2. 
I m   λ < 0 . Thus, 1 2 < x < 0 . The chain of values of u k can be derived similarly, in which the order of magnitude of u k ,   k given in Equation (10) holds.
Case 3. 
I m   λ   =   0 . This means that λ is a real number, which is either positive or negative but not zero. Hence, we have the following subcases:
Subcase 1. 
If λ > 0 , then e   γ   =   0 . For k 0 ,
u k   =   π K 1 2 2 + y 2 u 0   =   π 1 2 2 + y 2   =   π 1 2 2 + y 2 = u 1 u 2   =   π 3 2 2 + y 2   =   π 3 2 2 + y 2   =   u 1 u 3   =   π 5 2 2 + y 2   =   π 5 2 2 + y 2   =   u 2 u 4   =   π 7 2 2 + y 2   =   π 7 2 2 + y 2   =   u 3
and so on. Hence,
u 0   =   u 1   <   u 1   =   u 2   <   u 2   =   u 3   <   u 3   =   u 4   <     < u k   =   u k + 1   <   u k + 1   =   u k + 2   <   ,
which is exactly (11).
Subcase 2. 
If λ < 0 ,   θ = π , and hence, x   =   1 2 . For k 0 ,
u k   =   π k 1 2 x 2 + y 2 ;   when   x   =   1 2 = π k 1 2 + y 2                                           = u k + 2  
from which it can easily be observed that
u 1   <   u 0   =   u 2   <   u 1   =   u 3   <   u 2   =   u 4   <     < u k   =   u k + 2   <  
which is exactly the chain in (12).
Moreover,
u k = π   k 1 2 γ = π k 1 2 x 2 + y 2 π k 1 2 x 2 = π k 1 2 x   with 1 2 x 1 2 = π k x + 1 2 π k x + 1 2   π k 1 .    
The asymptotic expansion of the Apostol-tangent numbers T n 0 ; λ is given in the next theorem.
Theorem 2 
Given λ \ 0 , let H be a finite subset of   T λ satisfying
max u : u H   <   min u : u T λ \ H :   =   v  
for all integers n 2 ,
T n 0 ; λ n ! = u H 1 u n + 1 + O v n + 1
Proof. 
Write the series (8) as k   1 μ k n + 1 . By Lemma 1, we can relabel the set of poles by increasing order of magnitude as
μ 0     μ 1     μ 2         μ M    
Since μ k π k 1 , for k 2 , the series is absolutely convergent for n 2 . For any M > 2 , the tail of the series is
k = M + 1 1 μ k n + 1 = 1 μ M + 1 n + 1 k = M + 1 μ M + 1 n + 1 μ k n + 1
Since k > M + 1 ,   μ M + 1 μ k n + 1 1 , we have μ M + 1 μ k n + 1   μ M + 1 k 2 for n 2. Hence,
k = M + 1 1 μ k n + 1 1 μ M + 1 n + 1 k = M + 1 μ M + 1 μ k 2
Let
C M , λ = k = M + 1 μ M + 1 μ k 2  
Then,
k = M + 1 1 μ k n + 1 1 μ M + 1 n + 1 C M , λ = C M , λ μ M + 1 n + 1
Now, consider C M , λ :
            C M , λ = k = M + 1 μ M + 1 μ k 2   = k = M + 1 μ M + 1 2 μ k 2 = μ M + 1 2 k = M + 1 1 μ k 2
Since
μ k = π k 1 2 γ π k 1 μ M + 1 = π M + 1 1 2 γ π M + 1 1 = π M + 1 2 γ
Then
C M , λ = M + 1 2 γ 2   k = M + 1 1 k 1 2 γ 2 2 M + 1 2 γ 2 k = M + 1 1 k 1 2 2 M + 1 2 γ 2 1 M 2 + l = 0 1 M + l 2
With
l = 0 1 M + l 2 1 1 M + x 2 d x = 1 M + 1
So,
      C M , λ     2 M + 1 2 γ 2 1 M 2 + 1 M + 1                     = 2 M + 1 2 γ 2 M 2 + 2 M + 1 2 γ 2 M + 1
Let
ξ 1 = M + 1 2 γ 2 M 2 3 2 γ 2
And
                            ξ 2 = M + 1 2 γ   M + 1 M + 1 + 1 2 γ M + 1 1 + 1 2 + γ .
Consequently,
C M , λ = 2 ξ 1 + ξ 2 M + 1 2 γ C M , λ μ M + 1 n + 1 2 ξ 1 μ M + 1 n + 1 + ξ 2 M + 1 2 γ μ M + 1 n + 1
where
μ M + 1 = π M + 1 2 γ = M + 1 2 R e   γ 2 + I m   γ 2   M
So,
C M , λ μ M + 1 n + 1 2 3 2 γ 2 π n + 1 M + 1 2 γ n + 1 + 2 1 + 1 2 + γ M + 1 2 γ π n + 1 M + 1 2 γ n + 1 2 3 2 γ 2 π n + 1 M + 1 2 γ n + 1 + 2 1 + 1 2 + γ π n + 1 M + 1 2 γ n 2 3 2 γ 2 π n + 1 M n + 1 + 2 1 + 1 2 + γ π n + 1 M n                                 2 3 2 γ 2 π n + 1 M n + 1 + 2 1 + 1 2 + γ π n + 1 M n + 1                               2 3 2 γ 2 π n + 1 + 2 1 + 1 2 + γ π n + 1
We can see that C M , λ 0 as n for M   >   2 . Thus, the tail of the series is
k = M + 1 1 μ k n + 1 0   as   n .
Moreover, for fixed M > 2 and n 0 , C M , λ is bounded and independent of M. Hence, we can replace C M ,   λ with C λ . This completes the proof of the theorem. □
When λ = 1 ,   log λ = 0 , and u k = 1 2 2 k 1 π i ,   k . Take H = π i 2 ,   π i 2 . Then v = 3 π 2 , and the ordinary tangent numbers T n = T n 0 ; 1 satisfy
T n n ! = T n   0 ; 1 n ! = 1 π i 2 n + 1 + 1 π i 2 n + 1 + O 3 π 2 n + 1
An approximation of T n 0 ; 1 is given by
T n n ! 2 n + 1 π i n + 1 + 2 n + 1 π i n + 1
For even n ,   n 2 , it is known that T n = 0 , which is also true when we use Equation (14). Then, we have
T 2 n 2 n ! 2 2 n + 1 π i 2 n + 1 + 2 2 n + 1 π i 2 n + 1 = 0 .
For odd indices,
T 2 n 1 2 n 1 ! 2 2 n π i 2 n + 2 2 n π i 2 n 2 2 n + 1 π i 2 n     T 2 n 1 1 n 2 2 n + 1 2 n 1 ! π 2 n     ,                 n 1 .                                        
T 2 3 1 1 3 2 2 3 + 1 2 3 1 ! π 2 3 2 7 5 ! π 6 T 5 15.97688023 .              
This value is very close to the exact value of T 5 which is 16 .
It is proved in the next theorem that an asymptotic approximation of the Apostol-tangent polynomials can be obtained from its Fourier series (Theorem 1) by choosing an appropriate subset of T λ .
Theorem 3. 
Given λ \ 0 , let H be a finite subset of   T λ satisfying
max u : u H < min u : u T λ   \ H v .  
For all integers n 2 , we have uniformly for x in a compact subset K of ,
T n x ; λ n ! = u     H e u x u n + 1 + O e v x v n + 1 ,
where the constant implicit in the order term depends on λ ,   H and K . Moreover, for n 0 , this constant can be made independent of K , equal to the constant for the Apostol-tangent numbers, corresponding to the case x = 0 .
Proof. 
From the generating function in Equation (6), we have
2 e x + y z λ e 2 z + 1 = n = 0 T n x + y ; λ z n n ! .
The left-hand side of the equation can be written as
2 e x + y z λ e 2 z + 1 = 2 e x z e y z λ e 2 z + 1 = n = 0 T n x ; λ z n n ! e y z = n = 0 T n x ; λ z n n !   n = 0 y z n n ! = n = 0 k = 0 n T n k x ; λ z n k n k ! · y z k k ! · n ! n ! = n = 0 k = 0 n n k T n k x ; λ y k z n n ! .
Hence,
T n x + y ; λ = k = 0 n n k T n k x ; λ y k .
For z , writing z = 0 + z   ( here y = z ,   x = 0 ) ,
T n z ; λ = k = 0 n n k T n k 0 ,   λ z k = k = 0 n n ! n k ! k ! T n k 0 ,   λ z k T n z ; λ n ! = k = 0 n T n k 0 ,   λ z k n k ! k !                   = k = 0 n T n k 0 , λ n k !         z k k ! = k = 0 n u H 1 u n k + 1 + O v n k + 1 z k k ! = k = 0 n u H 1 u n k + 1         z k k ! + k = 0 n O v n k + 1 z k k ! ,
where the implicit constant c in the order term is that corresponding to z = 0 and only depends on H and λ . Note also that
k = 0 n O v n k + 1 z k k ! k = 0 n c v n k + 1 z k k ! = c v n + 1 k = 0 n v k z k k ! c v n + 1 e n v z ,
where
e n = k = 0 n w k k !
To complete the proof of the theorem, it remains to show that
e n u z u n + 1 = e u z e n u z u n + 1
is bounded. Using the Mean Value Theorem (MVT) for Banach spaces (see also [20]), we have
    e n w   =   w n + 1 n + 1 ! + w n + 2 n + 2 ! + = w n + 1 n + 1 ! 1 + w n + 2 + w 2 n + 3 n + 2 +
from which
e n w   w n + 1 n + 1 ! 1 + w n + 2 + w 2 n + 3 n + 2 + w n + 1 n + 1 ! e e + w
where e + w   =   max e w , 0 . Since u     v ,   for   all   u H ,   we   have
e u z u n + 1 e u z u z n + 1 u n + 1 n + 1 !                                       = e u z z n + 1 u n + 1 u n + 1 n + 1 !                                                                     = e u z z n + 1 n + 1 ! < e v z z n + 1 n + 1 !
so that
u H e u z u n + 1     u H   e n u z     u n + 1 H e v z z n + 1 n + 1 !
where H denotes the number of elements in H . We give the argument that
H e v z z n + 1 n + 1 ! < c   e   v z v n + 1
If
H v z n + 1 n + 1 < c ,
which certainly holds for n 0 , uniformly for z in a compact subset K . □
Corollary 2. 
Let K be an arbitrary compact subset of . The tangent polynomials satisfy uniformly on K the estimates
T 2 n   x 2 n ! = 1   n   2 2 n + 2   sin π x 2 π 2 n + 1 + O   e 3 π 2   x 3 π 2   2 n + 1     T 2 n 1   x 2 n 1 ! = 1   n   2 n + 1   cos   π x 2 π 2 n + O e 3 π 2   x 3 π 2   2 n
where the implicit constant in the order term depends on the set K. Moreover, for n   0 , this constant can be made independent of K, equal to the constant for the tangent numbers, corresponding to the case x = 0 .
Proof. 
The tangent polynomials correspond to the case λ = 1 so that
u k = 1 2   2 k 1 π i ,   k .
Thus
T 1 = 1 2 2 k 1 π i : k
Taking
H = 2 k 1 π i :   k = 1 , 0   = π i 2 , π i 2 ,
then v = 3 π i 2 = 3 π 2 . From Theorem 3,
T n x ; 1 n ! = u ϵ H e u x u n + 1 + O e v x v n + 1                                           = e π i x 2 π i 2 n + 1 + e π i x 2 π i 2 n + 1 + O e 3 π 2 x 3 π 2 n + 1 .
For even indices,
T 2 n     x 2 n !   =   T 2 n x ; 1 2 n ! = e π i x 2 π i 2 2 n + 1 + e π i x 2 π i 2 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1   = 2 2 n + 1 e π i x 2 π i 2 n + 1 2 n + 1 e π i x 2 π i 2 n + 1 + O e 3 π 2     x 3 π 2 2 n + 1 = 2 2 n + 1 cos π x 2 + i sin π x 2 2 n + 1 cos π x 2 i sin π x 2 π i 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1 = 2 n + 1 cos π x 2 + i sin π x 2 cos π x 2 + i sin π x 2 π i 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1 = 2 n + 1 2 i sin π x 2 π i 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1 = 2 n + 2 i sin π x 2 π 2 n + 1 i 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1 = 2 2 n + 2 sin π x 2 π 2 n + 1 1 n + O e 3 π 2 x 3 π 2 2 n + 1 = 1 n 2 2 n + 2 sin π x 2 π 2 n + 1 + O e 3 π 2 x 3 π 2 2 n + 1 .
For odd indices,
T 2 n 1 x 2 n 1 !   =   T 2 n 1 x ; 1 2 n 1 ! = e π i x 2 π i 2 2 n + e π i x 2 π i 2 2 n + O e 3 π 2 x 3 π 2 2 n = e π i x 2 π i 2 2 n + e π i x 2 π i 2 2 n + O e 3 π 2 x 3 π 2 2 n = 2 n e π i x 2 π i 2 n + 2 n e π i x 2 π i 2 n + O e 3 π 2 x 3 π 2 2 n   = 2 n cos π x 2 i sin π x 2 + 2 n cos π x 2 + i sin π x 2 π i 2 n + O e 3 π 2 x 3 π 2 2 n =   2 n cos   π x 2 i   sin π x 2 + cos   π x 2 + i   sin   π x 2 π i   2 n + O   e 3 π 2   x 3 π 2   2 n     =   2 n     2   cos π x 2 π i   2 n + O   e 3 π 2   x 3 π 2   2 n =   2 n + 1   cos π x 2 π 2 n   i 2   n + O   e 3 π 2   x 3 π 2   2 n =   1   n   2 n + 1   cos π x 2 π 2 n + O e 3 π 2   x 3 π 2   2 n .  

3. The Case When λ Is a Negative Real Number

When λ   is a negative real number, writing λ = λ , the generating function in Equation (6) can be written as
2 e x t λ e 2 t   + 1 = n = 0 T n   x ; λ   t n n !
The poles of the generating function (3.1) is given by
T λ = 1 2 2 k + 1 π i + ln λ : k .
The next theorem immediately follows from Theorem 3.
Theorem 4. 
Given that λ is a negative real number, let F be a finite subject of T λ satisfying
max   a : a F   <   min   a : a     T λ \ F :   =   ξ .  
For all integers n   2 ,   we have uniformly for x in a compact subset K   o f   ,
T n   x   ;   λ n   ! = a   F   e a x a n + 1 + O     e ξ x ξ n + 1 ,
where the constant implicit in the order term depends on λ   ,   F ,   a n d   K .
The Apostol-tangent numbers T n   0 ; 1 corresponding to the case λ = 1   have the generating function
2 e 2 t + 1 = n = 0 T n   0 ; 1   t n n !   ,
The set of poles is T 1   =   k π i   : k   \ 0 . An asymptotic formula for T n   0 ; 1 is given in the following theorem.
Theorem 5. 
For n 3 , the Apostol-tangent numbers T n   0 ; 1 satisfying
T n   0 ; 1 n ! = 1 π i   n + 1 + 1 π i   n + 1 + O   2 π   n + 1 .
In particular,
T 2 n 1   0 ; 1 2 n 1 ! = 1   n   2 π   2 n + O   2 π   2 n .
Proof. 
Taking x = 0 ,   F   =   π i ,   π i   in Theorem 4, then ξ = 2 π .
Hence,
T n   x   ;   λ n ! = a F e a x a n + 1 + O   e ξ x ξ n + 1     T n 0 ; 1 n ! = 1 π i   n + 1 + 1 π i   n + 1 + O   2 π   n + 1
for which Equation (19) follows. For n   2 ,   21   gives   T 2 n   0 ; 1     0 . Indeed T 2 n   0 ; 1   =   0
  n   1 .   For n 1 ,
  T 2 n 1   0 ; 1 2 n 1 ! = 1 π i   2 n + 1 π i   2 n + O   2 π   n + 1 .             = 1 π i   2 n + 1 π i   2 n + O   2 π   n + 1 = 2 π i   2 n + O   2 π   n + 1               = 2 π   2 n   i   2 n +   O   2 π   n + 1   = 1   n   2 π   2 n + O   2 π   n + 1   .
Taking n = 4 ,
T 7 0 ; 1   =   2 7 ! π   8     1.06233 .
The actual value of T 7 0 ; 1   =   2 8 B 8 8 = 16 15   1.06667 .
The Apostol-tangent polynomials T n   x ; 1 correspond to the case λ   =   1 . These polynomials have the generating function
2   e x t e 2 t + 1 = n = 0 T n   x ; 1   t n n !
We will prove the following theorem.
Theorem 6. 
Let K be a compact subset of . The Apostol-tangent polynomials T n   x ; 1 satisfy uniformly on K the estimates
T 2 n   x ; 1 2 n ! =   1   n   2   sin π x π 2 n + 1 =   O e 2 π x 2 π   2 n + 1 T 2 n 1   x ; 1 2 n 1 ! = 1 n   2   cos π x π 2 n + O e 2 π x 2 π 2 n .
Proof. 
Taking F   =   π i ,   π i , then ξ   =   2 π . Hence, it follows from Theorem 4 that
T n   x ; 1 n ! = e π i x π i n + 1 + e π i x π i n + 1 + O e 2 π x 2 π n + 1 .
For even indices,
T 2 n   x ; 1 2 n ! = e π i x π i 2 n + 1 + e π i x π i 2 n + 1 + O e 2 π x 2 π 2 n + 1                             = e π i x π i 2 n + 1 e π i x π i 2 n + 1 + O e 2 π x 2 π 2 n + 1                           = cos π x + i sin π x cos   π i x + i sin π x π i 2 n + 1 + O e 2 π x 2 π 2 n + 1 = 2 i sin π x π i 2 n + 1 + O e 2 π x 2 π 2 n + 1 = 2 sin π x π 2 n + 1 i 2 n + O e 2 π x 2 π 2 n + 1 = 1 n   2   s i n π x π 2 n + 1 + O e 2 π x 2 π 2 n + 1 .          
For odd indices,
T 2 n 1   x ; 1 2 n 1 ! = e π i x π i 2 n + e π i x π i 2 n + O e 2 π x 2 π 2 n = e π i x π i 2 n + e π i x π i 2 n + O e 2 π x 2 π 2 n = cos π x + i sin π x + cos π x i sin π x π i 2 n + O e 2 π x 2 π 2 n = 2 cos π x π i 2 n + O e 2 π x 2 π 2 n                                             = 2 cos π x π 2 n i 2 n + O e 2 π x 2 π 2 n                                             = 1 n   2 cos π x π 2 n + O e 2 π x 2 π 2 n .

4. Conclusions and Recommendation

The method of Navas et al. [24] is a clever way to obtain an asymptotic approximation from the Fourier series. In this paper, the method was applied to obtain asymptotic approximations of the Apostol-tangent numbers and polynomials for nonzero complex values of the parameter λ . The case when λ is negative was explicitly considered because the poles are simply in terms of 1 2 ln λ plus odd multiples of π 2 i . Moreover, the cases λ = 1 and λ = 1 give beautiful approximations of the corresponding Tangent polynomials in terms of the sine and cosine functions depending on whether n is even or odd.
The author recommends finding Fourier expansion and asymptotic approximations of higher-order Apostol-Tangent numbers and polynomials using the method employed in this paper (see also [25]). Furthermore, one may also try to consider multiple generalized Tangent polynomials and their p-adic interpolation function [26].

Author Contributions

Conceptualization, C.B.C. and R.B.C.; Formal analysis, R.B.C.; Funding acquisition, R.B.C.; Investigation, C.B.C., B.A.A.D., J.A.A.C. and R.B.C.; Methodology, C.B.C., B.A.A.D., J.A.A.C. and R.B.C.; Supervision, C.B.C. and R.B.C.; Validation, C.B.C. and R.B.C.; Writing—original draft, B.A.A.D. and J.A.A.C.; Writing—review & editing, C.B.C. and R.B.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by CNU Research Institute for Computational Mathematics and Physics (CNU-RICMP), grant number CNU-RICMP-5 and The APC was funded by CNU-RICMP-5.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The articles used to support the findings of this study are available from the corresponding author upon request.

Acknowledgments

The authors would like to thank the reviewers for reading and evaluating the manuscript thoroughly.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Ryoo, C.S. A note on the Tangent numbers and polynomials. Adv. Stud. Theor. Phys. 2013, 7, 447–454. [Google Scholar] [CrossRef]
  2. Ryoo, C.S. On the analogues of Tangent numbers and polynomials associated with p-adic integral on Zp. Appl. Math. Sci. 2013, 7, 3177–3183. [Google Scholar] [CrossRef] [Green Version]
  3. Ryoo, C.S. A numerical investigation on the zeros of the Tangent polynomials. J. Appl. Math. Inform. 2014, 32, 315–322. [Google Scholar] [CrossRef]
  4. Ryoo, C.S. Differential equations associated with Tangent numbers. J. Appl. Math. Inform. 2016, 34, 487–494. [Google Scholar] [CrossRef]
  5. Ryoo, C.S. On the Twisted q-Tangent Numbers and Polynomials. Appl. Math. Sci. 2013, 7, 4935–4941. [Google Scholar] [CrossRef]
  6. Yasmin, G.; Muhyi, A. Certain results of 2-variable q-generalized tangent-Apostol type polynomials. J. Math. Comput. Sci. 2020, 22, 238–251. [Google Scholar] [CrossRef]
  7. Ryoo, C.S. Explicit Identities for the Generalized Tangent Polynomials. Nonlinear Anal. Differ. Equ. 2018, 6, 43–51. [Google Scholar] [CrossRef] [Green Version]
  8. Ryoo, C.S. A note on the symmetric properties for the Tangent polynomials. Int. J. Math. Anal. 2013, 7, 2575–2581. [Google Scholar] [CrossRef]
  9. Apostol, T.M. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
  10. Corcino, C.B.; Damgo, B.; Corcino, R.B. Fourier expansions for Genocchi polynomials of higher order. J. Math. Comput. Sci. 2020, 22, 59–72. [Google Scholar] [CrossRef]
  11. Luo, Q.M. Fourier expansions and integral representations for Genocchi polynomials. J. Integer Seq. 2009, 12, 09.1.4. [Google Scholar]
  12. Luo, Q.M. Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10, 917–925. [Google Scholar] [CrossRef]
  13. Luo, Q.M. Extensions of the Genocchi Polynomials and their Fourier expansions and integral representations. Osaka J. Math. 2011, 48, 291–309. [Google Scholar]
  14. Luo, Q.M.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar] [CrossRef] [Green Version]
  15. Luo, Q.M.; Srivastava, H.M. Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar] [CrossRef]
  16. Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
  17. Araci, S.; Acikgoz, M. Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its application. Adv. Differ. Equ. 2018, 2018, 67. [Google Scholar] [CrossRef] [Green Version]
  18. He, Y.; Araci, S.; Srivastava, H.M.; Abdel-Aty, M. Higher-order convolutions for Apostol–Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Mathematics 2019, 6, 329. [Google Scholar] [CrossRef] [Green Version]
  19. Bayad, A. Fourier expansions for Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials. Math. Comp. 2011, 80, 2219–2221. [Google Scholar] [CrossRef] [Green Version]
  20. Lopez, J.L.; Temme, N.M. Large Degree Asymptotics of Generalized Bernoulli and Euler Polynomials. J. Math. Anal. Appl. 2010, 363, 197–208. [Google Scholar] [CrossRef] [Green Version]
  21. Corcino, C.B.; Corcino, R.B. Asymptotics of Genocchi polynomials and higher order Genocchi polynomials using residues. Afr. Mat. 2020, 31, 781–792. [Google Scholar] [CrossRef]
  22. Lopez, J.L.; Temme, N.M. Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 1999, 239, 457–477. [Google Scholar] [CrossRef] [Green Version]
  23. Lopez, J.L.; Temme, N.M. Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions. Stud. Appl. Math. 1999, 103, 241–258. [Google Scholar] [CrossRef] [Green Version]
  24. Navas, L.M.; Ruiz, F.J.; Varona, J.L. Asymptotic estimates for Apostol Bernoulli and Apostol-Euler polynomials. Math. Comp. 2012, 81, 1707–1722. [Google Scholar] [CrossRef]
  25. Araci, S.; Acikgoz, M. Applications of Fourier Series and Zeta Functions to Genocchi Polynomials. Appl. Math. Inf. Sci. 2018, 12, 951–955. [Google Scholar] [CrossRef]
  26. Araci, S.; Acikgoz, M.; Sen, E. A note on the p-Adic interpolation function for multiple generalized Genocchi numbers. Turk. J. Anal. Number Theory 2013, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Corcino, C.B.; Damgo, B.A.A.; Cañete, J.A.A.; Corcino, R.B. Asymptotic Approximation of the Apostol-Tangent Polynomials Using Fourier Series. Symmetry 2022, 14, 53. https://doi.org/10.3390/sym14010053

AMA Style

Corcino CB, Damgo BAA, Cañete JAA, Corcino RB. Asymptotic Approximation of the Apostol-Tangent Polynomials Using Fourier Series. Symmetry. 2022; 14(1):53. https://doi.org/10.3390/sym14010053

Chicago/Turabian Style

Corcino, Cristina B., Baby Ann A. Damgo, Joy Ann A. Cañete, and Roberto B. Corcino. 2022. "Asymptotic Approximation of the Apostol-Tangent Polynomials Using Fourier Series" Symmetry 14, no. 1: 53. https://doi.org/10.3390/sym14010053

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop