A Family of Analytic and Bi-Univalent Functions Associated with Srivastava-Attiya Operator
Abstract
:1. Introduction
- 1.
- We can see the function , then it is easy to see that , and we have, , then
- 2.
2. Coefficient Estimates of
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar]
- Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bull. Sci. Math. 2006, 130, 49–70. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef]
- Bulboacă, T. Differential Subordinations and Superordinations New Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Kutbi, M.; Attiya, A.A. Differential subordination results for certain integrodifferential operator and its applications. Abstr. Appl. Anal. 2012, 2012, 638234. [Google Scholar] [CrossRef]
- Altınkaya, S.; Yalcin, S. Some applications of generalized Srivastava-Attiya operator to the bi-concave functions. Miskolc Math. Notes 2020, 21, 51–60. [Google Scholar] [CrossRef]
- Bukhari, S.; Noor, K.I.; Malik, B. Some applications of generalized Srivastava-Attiya integral operator. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 2251–2257. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Aljouiee, A.; Goswami, P. Coefficients estimates of the class of biunivalent functions. J. Funct. Spaces 2016, 4, 3454763. [Google Scholar] [CrossRef]
- Altınkaya, S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. Turk. J. Math. 2020, 44, 553–560. [Google Scholar]
- Aouf, M.K.; El-Ashwah, R.M.; Abd-Eltawab, A.M. New subclasses of bi-univalent functions involving Dziok–Srivastava operator. ISRN Math. Anal. 2013, 5, 387178. [Google Scholar]
- Attiya, A.A.; Lashin, A.; Ali, E.E.; Agarwal, P. Coefficient bounds for certain classes of analytic functions associated with Faber polynomial. Symmetry 2021, 13, 302. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turk. J. Math. 2016, 40, 1386–1397. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kina, S.K. Faber polynomial coefficients for generalized bi–subordinate functions of complex order. J. Math. Inequal. 2018, 12, 645–653. [Google Scholar] [CrossRef]
- Goswami, P.; Bulut, S.; Sekhawat, N. Coefficients estimates of a new class of analytic bi-univalent functions with bounded boundary rotation. Hacet. J. Math. Stat. 2022, 51, 1271–1279. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connectedwith Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan. Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for analytic bi-bazilevic functions. Mat. Vesn. 2015, 67, 123–129. [Google Scholar]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 3, 573017. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attiya, A.A.; Yassen, M.F. A Family of Analytic and Bi-Univalent Functions Associated with Srivastava-Attiya Operator. Symmetry 2022, 14, 2006. https://doi.org/10.3390/sym14102006
Attiya AA, Yassen MF. A Family of Analytic and Bi-Univalent Functions Associated with Srivastava-Attiya Operator. Symmetry. 2022; 14(10):2006. https://doi.org/10.3390/sym14102006
Chicago/Turabian StyleAttiya, Adel A., and Mansour F. Yassen. 2022. "A Family of Analytic and Bi-Univalent Functions Associated with Srivastava-Attiya Operator" Symmetry 14, no. 10: 2006. https://doi.org/10.3390/sym14102006
APA StyleAttiya, A. A., & Yassen, M. F. (2022). A Family of Analytic and Bi-Univalent Functions Associated with Srivastava-Attiya Operator. Symmetry, 14(10), 2006. https://doi.org/10.3390/sym14102006