Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Assessments and Procedures
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Data
3.2. Between-Sides Comparison of MMPs of PFMs in Each Group
3.3. Intra-Group Correlations between MMPs of PFMs and Sociodemographic and Clinical Data
4. Discussion
4.1. Between-Sides Asymmetries of MMPs of PFMs
4.2. Intra-Group Correlations Patterns between MMPS of PFMs, and Age, BMI and Clinical Status
4.3. Clinically Relevance of the Assessment of MMPs in PF
4.4. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quaghebeur, J.; Petros, P.; Wyndaele, J.J.; De Wachter, S. Pelvic-Floor Function, Dysfunction, and Treatment. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Avila Gonzalez, C.A.; Driscoll, M.; Schleip, R.; Wearing, S.; Jacobson, E.; Findley, T.; Klingler, W. Frontiers in Fascia Research. J. Bodyw. Mov. Ther. 2018, 22, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Jundt, K.; Kiening, M.; Fischer, P.; Bergauer, F.; Rauch, E.; Janni, W.; Peschers, U.; Dimpfl, T. Is the Histomorphological Concept of the Female Pelvic Floor and Its Changes Due to Age and Vaginal Delivery Correct? Neurourol. Urodyn. 2005, 24, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.; Cholewicki, J. Functional control of the spine. In Movement, Stability & Lumbopelvic Pain: Integration of Research and Therapy; Vleeming, A., Mooney, V., Stoeckart, R., Eds.; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2007; pp. 489–512. [Google Scholar]
- Tim, S.; Mazur-bialy, A.I. The Most Common Functional Disorders and Factors Affecting Female Pelvic Floor. Life 2021, 11, 1397. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, P. Selected Fascial Aspects of Osteopathic Practice. J. Bodyw. Mov. Ther. 2012, 16, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.E. The Common Compensatory Pattern. Its Origin and Relationship to the Postural Model. Am. Acad. Osteopat. 2003, 14, 19–40. [Google Scholar]
- Chantereau, P.; Brieu, M.; Kammal, M.; Farthmann, J.; Gabriel, B.; Cosson, M. Mechanical Properties of Pelvic Soft Tissue of Young Women and Impact of Aging. Int. Urogynecol. J. 2014, 25, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Tähtinen, R.M.; Cartwright, R.; Tsui, J.F.; Aaltonen, R.L.; Aoki, Y.; Cárdenas, J.L.; El Dib, R.; Joronen, K.M.; Al Juaid, S.; Kalantan, S.; et al. Long-Term Impact of Mode of Delivery on Stress Urinary Incontinence and Urgency Urinary Incontinence: A Systematic Review and Meta-Analysis. Eur. Urol. 2016, 70, 148–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baracho, S.M.; Da Silva, L.B.; Baracho, E.; Da Silva Filho, A.L.; Sampaio, R.F.; De Figueiredo, E.M. Pelvic Floor Muscle Strength Predicts Stress Urinary Incontinence in Primiparous Women after Vaginal Delivery. Int. Urogynecol. J. 2012, 23, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Thorp, J.; Grantz, K. Clinical aspects of normal and abnormal labor. In Creasy and Resnik’s Maternal-Fetal Medicine: Principles and Practice; Resnik, R., Lockwood, C., Moore, T., Greene, M., Copel, J., Silver, R., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 723–757. [Google Scholar]
- Začesta, V.; Rezeberga, D.; Plaudis, H.; Drusany-Staric, K.; Cescon, C. Could the Correct Side of Mediolateral Episiotomy Be Determined According to Anal Sphincter EMG? Int. Urogynecol. J. 2018, 29, 1501–1507. [Google Scholar] [CrossRef]
- Dumoulin, C.; Pazzoto Cacciari, L.; Mercier, J. Keeping the Pelvic Floor Healthy. Climacteric 2019, 22, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, G. Den Pelvic Floor Dysfunction in Aging Women. Taiwan. J. Obstet. Gynecol. 2007, 46, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, J.A.; Larkin, L.M.; Claflin, D.R.; Brooks, S.V. Age-Related Changes in the Structure and Function of Skeletal Muscles. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1091–1096. [Google Scholar] [CrossRef]
- Sone, T.; Miyake, M.; Takeda, N.; Fukunaga, M. Urinary Excretion of Type I Collagen Crosslinked N-Telopeptides in Healthy Japanese Adults: Age- and Sex-Related Changes and Reference Limits. Bone 1995, 17, 335–339. [Google Scholar] [CrossRef]
- Burnett, L.A.; Cook, M.; Shah, S.; Kado, D.M.; Alperin, M.; Sciences, R.; Surgery, R.; Diego, S.; States, U.; States, U.; et al. Age-Associated Changes in the Mechanical Properties of Human Cadaveric Pelvic Floor Muscles. J. Biomech. 2020, 98, 109436. [Google Scholar] [CrossRef] [PubMed]
- Stuge, B.; Mørkved, S.; Haug Dahl, H.; Vøllestad, N. Abdominal and Pelvic Floor Muscle Function in Women with and without Long Lasting Pelvic Girdle Pain. Man. Ther. 2006, 11, 287–296. [Google Scholar] [CrossRef]
- Bo, K.; Frawley, H.C.; Haylen, B.T.; Abramov, Y.; Almeida, F.G.; Berghmans, B.; Bortolini, M.; Dumoulin, C.; Gomes, M.; McClurg, D.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for the Conservative and Nonpharmacological Management of Female Pelvic Floor Dysfunction. Neurourol. Urodyn. 2017, 36, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Pool-Goudzwaard, A.; Hoek Van Dijke, G.; Van Gurp, M.; Mulder, P.; Snijders, C.; Stoeckart, R. Contribution of Pelvic Floor Muscles to Stiffness of the Pelvic Ring. Clin. Biomech. 2004, 19, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Gajdosik, R.L. Passive Extensibility of Skeletal Muscle: Review of the Literature with Clinical Implications. Clin. Biomech. 2001, 16, 87–101. [Google Scholar] [CrossRef]
- Halski, T.; Ptaszkowski, K.; Slupska, L.; Dymarek, R.; Paprocka-Borowicz, M. Relationship between Lower Limbs Position and Pelvic Floor Muscle Surface Electromyography Activity in Menopausal Women: A Prospective Observational Study. Clin. Interv. Aging 2017, 12, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Ptaszkowski, K.; Małkiewicz, B.; Zdrojowy, R.; Paprocka-Borowicz, M.; Ptaszkowska, L. Assessment of the Elastographic and Electromyographic of Pelvic Floor Muscles in Postmenopausal Women with Stress Urinary Incontinence Symptoms. Diagnostics 2021, 11, 2051. [Google Scholar] [CrossRef]
- Davidson, M.J.; Nielsen, P.M.F.; Taberner, A.J.; Kruger, J.A. Is It Time to Rethink Using Digital Palpation for Assessment of Muscle Stiffness? Neurourol. Urodyn. 2020, 39, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-de-souza, D.P.; Alcaraz-clariana, S.; García-Luque, L.; Carmona-Pérez, C.; Garrido-Castro, J.L.; Cruz-Medel, I.; Carmargo, P.R.; Alburquerque-Sendín, F. Absolute and Relative Reliability of the Assessment of the Muscle Mechanical Properties of Pelvic Floor Muscles in Women with and without Urinary Incontinence. Diagnostics 2021, 11, 2315. [Google Scholar] [CrossRef]
- Aird, L.; Samuel, D.; Stokes, M. Quadriceps Muscle Tone, Elasticity and Stiffness in Older Males: Reliability and Symmetry Using the MyotonPRO. Arch. Gerontol. Geriatr. 2012, 55, e31–e39. [Google Scholar] [CrossRef] [PubMed]
- Muckelt, P.E.; Warner, M.B.; James, T.C.; Muckelt, R.; Hastermann, M.; Schoenrock, B.; Martin, D.; Macgregor, R.; Blottner, D.; Stokes, M. Protocol and Reference Values for Minimal Detectable Change of MyotonPRO and Ultrasound Imaging Measurements of Muscle and Subcutaneous Tissue. Sci. Rep. 2022, 12, 13654. [Google Scholar] [CrossRef]
- Kelly, J.P.; Koppenhaver, S.L.; Michener, L.A.; Proulx, L.; Bisagni, F.; Cleland, J.A. Characterization of Tissue Stiffness of the Infraspinatus, Erector Spinae, and Gastrocnemius Muscle Using Ultrasound Shear Wave Elastography and Superficial Mechanical Deformation. J. Electromyogr. Kinesiol. 2018, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Schneebeli, A.; Falla, D.; Clijsen, R.; Barbero, M. Myotonometry for the Evaluation of Achilles Tendon Mechanical Properties: A Reliability and Construct Validity Study. BMJ Open Sport Exerc. Med. 2020, 6, e000726. [Google Scholar] [CrossRef] [Green Version]
- Zinder, S.M.; Padua, D.A. Reliability, Validity, and Precision of a Handheld Myometer for Assessing in Vivo Muscle Stiffness. J Sport Rehabil 2011, 20, 2010_0051. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Castro, J.L.; Valera, I.C.A.; Amaro, J.P.; Galisteo, A.M.; Navas, C.G.; De Souza, D.P.R.; Clariana, S.A.; Luque, L.G.; Sánchez, I.R.M.; Medina, C.L.; et al. Mechanical Properties of Lumbar and Cervical Paravertebral Muscles in Patients with Axial Spondyloarthritis: A Case-Control Study. Diagnostics 2021, 11, 1662. [Google Scholar] [CrossRef]
- Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P. Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain. Diagnostics 2022, 12, 302. [Google Scholar] [CrossRef]
- Davidson, M.J.; Bryant, A.L.; Bower, W.F.; Frawley, H.C. Myotonometry Reliably Measures Muscle Stiffness in the Thenar and Perineal Muscles. Physiother. Can. 2017, 69, 104–112. [Google Scholar] [CrossRef]
- Oleksy, L.; Mika, A.; Kielnar, R.; Grzegorczyk, J.; Marchewka, A.; Stolarczyk, A. The Influence of Pelvis Reposition Exercises on Pelvic Floor Muscles Asymmetry: A Randomized Prospective Study. Medicine 2019, 28, e13988. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, A.; Hai, Y.; Li, W.; Yin, L.; Guo, R. Asymmetric Biomechanical Characteristics of the Paravertebral Muscle in Adolescent Idiopathic Scoliosis. Clin. Biomech. 2019, 65, 81–86. [Google Scholar] [CrossRef]
- Barber, M.D.; Walters, M.D.; Bump, R.C. Short Forms of Two Condition-Specific Quality-of-Life Questionnaires for Women with Pelvic Floor Disorders (PFDI-20 and PFIQ-7). Am. J. Obstet. Gynecol. 2005, 193, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, B.; Torres-Lacomba, M.; Yuste-Sánchez, M.J.; Navarro-Brazález, B.; Pacheco-da-Costa, S.; Gutiérrez-Ortega, C.; Zapico-Goñi, A. Cultural Adaptation and Validation of the Pelvic Floor Distress Inventory Short Form (PFDI-20) and Pelvic Floor Impact Questionnaire Short Form (PFIQ-7) Spanish Versions. Eur. J. Obs. Gynecol. Reprod. Biol. 2013, 170, 281–285. [Google Scholar] [CrossRef]
- Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Fernández-de-las-Peñas, C.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P.; Alburquerque-Sendín, F. Paravertebral Muscle Mechanical Properties and Spinal Range of Motion in Patients with Acute Neck or Low Back Pain: A Case-Control Study. Diagnostics 2021, 11, 352. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, M.; Alburquerque-Sendín, F.; Garrido-Castro, J.L.; Rodrigues-de-Sousa, D.P. Effects of Hypopressive Exercises on Post-Partum Abdominal Diastasis, Trunk Circumference, and Mechanical Properties of Abdominopelvic Tissues: A Case Series. Physiother. Theory Pract. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Siccardi, M.; Bordoni, B. Anatomy, Abdomen and Pelvis, Perineal Body. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537345/ (accessed on 18 August 2022).
- Wu, Z.; Zhu, Y.; Xu, W.; Liang, J.; Guan, Y.; Xu, X. Analysis of Biomechanical Properties of the Lumbar Extensor Myofascia in Elderly Patients with Chronic Low Back Pain and That in Healthy People. Biomed Res. Int. 2020, 2020, 7649157. [Google Scholar] [CrossRef] [PubMed]
- Gavronski, G.; Veraksitš, A.; Vasar, E.; Maaroos, J. Evaluation of Viscoelastic Parameters of the Skeletal Muscles in Junior Triathletes. Physiol. Meas. 2007, 28, 625–637. [Google Scholar] [CrossRef]
- White, A.; Abbott, H.; Masi, A.T.; Henderson, J.; Nair, K. Biomechanical Properties of Low Back Myofascial Tissue in Younger Adult Ankylosing Spondylitis Patients and Matched Healthy Control Subjects. Clin. Biomech. 2018, 57, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turkish J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Arouca, M.A.F.; Duarte, T.B.; Lott, D.A.M.; Magnani, P.S.; Nogueira, A.A.; Rosa-e-Silva, J.C.; Brito, L.G.O. Validation and Cultural Translation for Brazilian Portuguese Version of the Pelvic Floor Impact Questionnaire (PFIQ-7) and Pelvic Floor Distress Inventory (PFDI-20). Int. Urogynecol. J. 2016, 27, 1097–1106. [Google Scholar] [CrossRef]
- Cetin, S.Y.; Buyuk, A.; Ayan, A. Investigation of the Relationship between the Pelvic Floor and Sexual Dysfunction in Women with Sjögren’s Syndrome. Int. J. Rheum. Dis. 2020, 23, 1728–1733. [Google Scholar] [CrossRef]
- Burwell, R.G.; Dangerfield, P.H. Pathogenesis of Progressive Adolescent Idiopathic Scoliosis Platelet Activation and Vascular Biology in Immature Vertebrae: An Alternative Molecular Hypothesis. Acta Orthop. Belg. 2006, 72, 247–260. [Google Scholar] [PubMed]
- Li, Y.; Yu, J.; Zhang, J.; Zhang, Z.; Wang, X. Quantifying the Stiffness of Lumbar Erector Spinae during Different Positions among Participants with Chronic Low Back Pain. PLoS ONE 2022, 17, e0270286. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ye, X.; Ye, Z.; Hong, K.; Chen, Z.; Wang, Y.; Li, C.; Li, J.; Huang, J.; Zhu, Y.; et al. Asymmetric Biomechanical Properties of the Paravertebral Muscle in Elderly Patients With Unilateral Chronic Low Back Pain: A Preliminary Study. Front. Bioeng. Biotechnol. 2022, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Sánchez, A.; Abián, P.; Jimenez, F.; Abián-Vicén, J. Structural and Mechanical Properties of the Achilles Tendon in Senior Badminton Players: Operated vs. Non-Injured Tendons. Clin. Biomech. 2021, 85, 105366. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, I.; Gaudreault, N.; Gaboury, I. Exploring the Effects of Standardized Soft Tissue Mobilization on the Viscoelastic Properties, Pressure Pain Thresholds, and Tactile Pressure Thresholds of the Cesarean Section Scar. J. Integr. Complement. Med. 2022, 28, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Driusso, P.; Beleza, A.C.S.; de Oliveira Sato, T.; de Carvalho Cavalli, R.; Ferreira, C.H.J.; de Fátima Carreira Moreira, R. Are There Differences in Short-Term Pelvic Floor Muscle Function after Cesarean Section or Vaginal Delivery in Primiparous Women? A Systematic Review with Meta-Analysis. Int. Urogynecol. J. 2020, 31, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Rubenson, J.; Pires, N.J.; Loi, H.O.; Pinniger, G.J.; Shannon, D.G. On the Ascent: The Soleus Operating Length Is Conserved to the Ascending Limb of the Force-Length Curve across Gait Mechanics in Humans. J. Exp. Biol. 2012, 215, 3539–3551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-Sánchez, A.; Abián, P.; Jiménez, F.; Abián-Vicén, J. Myotendinous Asymmetries Derived from the Prolonged Practice of Badminton in Professional Players. PLoS ONE 2019, 14, e0222190. [Google Scholar] [CrossRef]
- Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Valera, I.C.A.; Ladehesa-Pineda, L.; Puche-Larrubia, M.A.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P.; Alburquerque-Sendín, F. Paravertebral Muscle Mechanical Properties in Patients with Axial Spondyloarthritis or Low Back Pain: A Case-Control Study. Diagnostics 2021, 11, 1898. [Google Scholar] [CrossRef] [PubMed]
- Usgu, S.; Ramazanoğlu, E.; Yakut, Y. The Relation of Body Mass Index to Muscular Viscoelastic Properties in Normal and Overweight Individuals. Medicina 2021, 57, 1022. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Wu, C.Y.; Chen, C.W.; Cheng, H.L.; Chen, C.C.; Hsieh, Y.W. Age and Sex Differences in the Biomechanical and Viscoelastic Properties of Upper Limb Muscles in Middle-Aged and Older Adults: A Pilot Study. J. Biomech. 2022, 134, 111002. [Google Scholar] [CrossRef] [PubMed]
- Mencel, J.; Jaskólska, A.; Marusiak, J.; Kisiel-Sajewicz, K.; Siemiatycka, M.; Kaminski, L.; Jaskólski, A. Effect of Gender, Muscle Type and Skinfold Thickness on Myometric Parameters in Young People. PeerJ 2021, 9, e12367. [Google Scholar] [CrossRef] [PubMed]
- Larsudd-kåverud, J.; Gyhagen, J.; Åkervall, S.; Molin, M.; Milsom, I.; Wagg, A.; Gyhagen, M. The Influence of Pregnancy, Parity, and Mode of Delivery on Urinary Incontinence and Prolapse Surgery-a National Register Study. Am. J. Obstet. Gynecol. 2022. [Google Scholar] [CrossRef]
- Epstein, L.B.; Graham, C.A.; Heit, M.H. Systemic and Vaginal Biomechanical Properties of Women with Normal Vaginal Support and Pelvic Organ Prolapse. Am. J. Obstet. Gynecol. 2007, 197, 165.e1–165.e6. [Google Scholar] [CrossRef]
- Zhou, L.; Lee, J.H.; Wen, Y.; Constantinou, C.; Yoshinobu, M.; Omata, S.; Chen, B. Biomechanical Properties and Associated Collagen Composition in Vaginal Tissue of Women with Pelvic Organ Prolapse. J. Urol. 2012, 188, 875–880. [Google Scholar] [CrossRef]
- Terefe, A.B.; Gudeta, T.G.; Mengistu, G.T.; Sori, S.A. Determinants of Pelvic Floor Disorders among Women Visiting the Gynecology Outpatient Department in Wolkite University. Obstet. Gynecol. Int. 2022, 2022, 6949700. [Google Scholar]
- Khowailed, I.A.; Lee, Y.; Lee, H. Assessing the Differences in Muscle Stiffness Measured with Shear Wave Elastography and Myotonometer during the Menstrual Cycle in Young Women. Clin. Physiol. Funct. Imaging 2022, 42, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, R.R.; Richardson, C.A.; Maher, C.F.; Hodges, P.W. Pelvic Floor Muscle Activity in Different Sitting Postures in Continent and Incontinent Women. Arch. Phys. Med. Rehabil. 2008, 89, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
Nulliparous Group (n = 31) | Multiparous Group (n = 31) | Men Group (n = 31) | p-Value | |
---|---|---|---|---|
Age (years) | 23.9 ± 6.3 | 49.4 ± 8.8 | 36.8 ± 15.8 | <0.001 † |
BMI (kg/m2) | 21.2 (3.03) | 25.5 (5.1) | 23.4(3.2) | <0.001 † |
Vaginal deliveries (frequency) | 2: 25; 3: 6 | |||
Pregnancies (frequency) | 2: 20; 3: 8; 4: 0; 5: 2; 6: 1 | |||
Any instrumental delivery (frequency) | Yes: 7; No: 24 | |||
Any episiotomy (frequency) | Yes: 23; No: 8 | |||
Laceration (frequency) | Yes: 5; No: 26 | |||
Epidural analgesia (frequency) | Yes: 19; No: 12 | |||
Types of UI (frequency) | No UI: 10; SUI: 10; UUI: 7; MUI: 4 | |||
Menopause (frequency) | Yes: 16; No: 15 | |||
PFDI-20 | 38.0 (61.7) | |||
UDI-6 | 16.7 (14.6) | |||
CRADI-8 | 12.5 (16.4) | |||
POPDI-6 | 6.3 (25.0) | |||
PFIQ-7 | 33.1 (58.3) | |||
UIQ-7 | 9.5 (23.8) | |||
CRAIQ-7 | 6.8 (10.7) | |||
POPI-7 | 10.15 (1.19) |
Nulliparous Group (n = 31) | Multiparous Group (n = 31) | Men Group (n = 31) | |||||||
---|---|---|---|---|---|---|---|---|---|
Right | Left | p | Right | Left | p | Right | Left | p | |
Frequency (Hz) | 15.11 ± 2.00 | 15.39 ± 1.85 | 0.236 | 15.77 ± 2.32 | 16.42 ± 2.55 | 0.006 † | 11.81 ± 1.08 | 12.20 ± 1.26 | 0.067 |
Stiffness (N/m) | 229.00 ± 70.88 | 230.03 ± 57.39 | 0.896 | 254.72 ± 77.39 | 320.69 ± 64.74 | 0.197 | 141.61 ± 24.05 | 149.42 ± 22.48 | 0.086 |
Decrement (Ø) | 1.02 ± 0.20 | 1.01 ± 0.19 | 0.890 | 1.10 ± 0.16 | 1.15 ± 0.18 | 0.045 † | 0.93 ± 0.21 | 0.94 ± 0.20 | 0.472 |
Relaxation (ms) | 17.76 ± 2.77 | 17.26 ± 2.41 | 0.150 | 17.42 ± 3.02 | 16.41 ± 2.73 | 0.001 † | 25.19 ± 4.37 | 24.73 ± 4.09 | 0.319 |
Creep (De) | 0.95 ± 0.10 | 0.93 ± 0.09 | 0.061 | 0.98 ± 0.13 | 0.91 ± 0.11 | 0.001 † | 1.27 ± 0.33 | 1.28 ± 0.32 | 0.687 |
Frequency | Stiffness | Decrement | Relaxation | Creep | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | |
Age | ||||||||||
Nulliparous group | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Multiparous group | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Men group | −0.658 †† | −0.466 † | NS | NS | 0.357 † | 0.368 † | 0.823 †† | 0.756 †† | 0.803 †† | 0.766 †† |
BMI | ||||||||||
Nulliparous group | NS | NS | NS | NS | NS | NS | 0.378 † | 0.413 † | 0.359 † | 0.438 † |
Multiparous group | NS | 0.365 † | NS | 0.366 † | 0.467 † | 0.505 † | NS | NS | NS | NS |
Men group | −0.494 † | −0.415 † | NS | NS | NS | NS | 0.532 † | 0.494 † | 0.488 † | 0.481 † |
PDFI-20 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
UDI-6 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
CRADI-8 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
POPDI-6 | NS | NS | NS | NS | 0.384 † | 0.391 † | NS | NS | NS | NS |
PFIQ-7 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
UIQ-7 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
CRAIQ-7 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
POPI-7 | NS | NS | NS | NS | 0.488 † | 0.509 † | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues-de-Souza, D.P.; Beleza, A.C.S.; García-Luque, L.; Alcaraz-Clariana, S.; Carmona-Pérez, C.; De Miguel-Rubio, A.; Garzón-Alfaro, M.T.; Cruz-Medel, I.; Garrido-Castro, J.L.; Alburquerque-Sendín, F. Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study. Symmetry 2022, 14, 2124. https://doi.org/10.3390/sym14102124
Rodrigues-de-Souza DP, Beleza ACS, García-Luque L, Alcaraz-Clariana S, Carmona-Pérez C, De Miguel-Rubio A, Garzón-Alfaro MT, Cruz-Medel I, Garrido-Castro JL, Alburquerque-Sendín F. Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study. Symmetry. 2022; 14(10):2124. https://doi.org/10.3390/sym14102124
Chicago/Turabian StyleRodrigues-de-Souza, Daiana Priscila, Ana Carolina Sartorato Beleza, Lourdes García-Luque, Sandra Alcaraz-Clariana, Cristina Carmona-Pérez, Amaranta De Miguel-Rubio, María Teresa Garzón-Alfaro, Inés Cruz-Medel, Juan Luis Garrido-Castro, and Francisco Alburquerque-Sendín. 2022. "Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study" Symmetry 14, no. 10: 2124. https://doi.org/10.3390/sym14102124
APA StyleRodrigues-de-Souza, D. P., Beleza, A. C. S., García-Luque, L., Alcaraz-Clariana, S., Carmona-Pérez, C., De Miguel-Rubio, A., Garzón-Alfaro, M. T., Cruz-Medel, I., Garrido-Castro, J. L., & Alburquerque-Sendín, F. (2022). Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study. Symmetry, 14(10), 2124. https://doi.org/10.3390/sym14102124