Third-Order Neutral Differential Equations with Damping and Distributed Delay: New Asymptotic Properties of Solutions
Abstract
:1. Introduction
- (s1)
- :
- (s2)
- and ;
- (s3)
- , as and as ;
- (s4)
- such thatFor the sake of brevity, it would be better to define the following:Under a solution for Equation (8) with mean that for some and has the property
2. Preliminaries
3. Oscillation Results
4. Further Results
- (a)
- is positive for all ;
- (b)
- has a nonpositive and continuous partial derivative on and for when it is continuous and :Let us choose
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Almutairi, A.; Almarri, B.; Marin, M. An oscillation criterion of nonlinear differential equations with advanced term. Symmetry 2021, 13, 843. [Google Scholar] [CrossRef]
- Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Bib, Q. Multistability and fast-slow analysis for van der Pol–Duffing oscillator with varying exponential delay feedback factor. Appl. Math. Model. 2018, 57, 448–458. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Han, X. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 380–391. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Zhang, Z.; Han, X. Melnikov-threshold-triggered mixed-mode oscillations in a family of amplitude-modulated forced oscillator. J. Low Freq. Noise Vibration Act. Control 2019, 38, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovska, I.; Li, T.; Tunc, E. Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 2019, 5691758. [Google Scholar] [CrossRef]
- Santra, S.S.; Ghosh, A.; Bazighifan, O.; Khedher, K.M.; Nofal, T.A. Second-order impulsive differential systems with mixed and several delays. Adv. Differ. Equ. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Inequalities Appl. 2020, 69, 1–18. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Frassu, S.; Li, T.; Viglialero, G. Improvements and generalizations of results concerning attraction repulsion chemotaxis models. Math. Methods Appl. Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Frassu, S.; Rodríguez Galván, R.; Viglialoro, G. Uniform in time L-estimates for an attraction-repulsion chemotaxis model with double saturation. Discret. Contin. Dyn. Syst.-B 2022. [Google Scholar] [CrossRef]
- Tiryaki, A.; Aktas, M.F. Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping. J. Math. Anal. Appl. 2007, 325, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Bohnera, M.; Graceb, S.R.; Sagera, I.; Tunc, E. Oscillation of third-order nonlinear damped delay differential equations. Appl. Math. Comput. 2016, 278, 21–32. [Google Scholar] [CrossRef]
- Alzabut, J.; Manikandan, S.; Muthulakshmi, V.; Harikrishnan, S. Oscillation criteria for a class of nonlinear conformable fractional damped dynamic equations on time scales. J. Nonlinear Funct. Anal. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Al-Ghafri, K.S.; Almutairi, A.; Bazighifan, O.; Awrejcewicz, J. Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators. Symmetry 2022, 14, 566. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Lopes, A.M.; Bazighifan, O. Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions. Mathematics 2022, 10, 995. [Google Scholar] [CrossRef]
- Almarri, B.; Janaki, S.; Ganesan, V.; Ali, A.H.; Nonlaopon, K.; Bazighifan, O. Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term. Symmetry 2022, 14, 585. [Google Scholar] [CrossRef]
- Qaraad, B.; Bazighifan, O.; Nofal, T.; Ali, A.H. Neutral differential equations with distribution deviating arguments: Oscillation conditions. J. Ocean. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Ali, A.H.; Meften, G.; Bazighifan, O.; Iqbal, M.; Elaskar, S.; Awrejcewicz, J. A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry 2022, 14, 682. [Google Scholar] [CrossRef]
- Abed Meften, G.; Ali, A.H.; Al-Ghafri, K.; Awrejcewicz, J.; Bazighifan, O. Nonlinear Stability and Linear Instability of Double-Diffusive Convection in a Rotating with LTNE Effects and Symmetric Properties: Brinkmann-Forchheimer Model. Symmetry 2022, 14, 565. [Google Scholar] [CrossRef]
- Rasheed, M.; Ali, A.H.; Alabdali, O.; Shihab, S.; Rashid, A.; Rashid, T.; Hamad, S.H.A. The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation. J. Phys. Conf. Ser. 2021, 1999, 012080. [Google Scholar] [CrossRef]
- Dzurina, J.; Kotorova, R. Comparison theorems for the third-order trinomial differential equations with argument. Czechoslov. Math. J. 2009, 59, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Swanson, C.A. Comparison and Oscillation Theory of Linear Differential Equations; Mathematics in Science and Engineering; Elsevier: Amsterdam, The Netherlands, 1968. [Google Scholar]
- Baculikovia, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Ardjouni, A.; Djoudi, A. Existence of positive periodic solutions of neutral difference equations with variable coefficients. Commun. Optim. Theory 2018, 2018, 19. [Google Scholar]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Qaraad, B.; Moaaz, O.; Baleanu, D.; Santra, S.S.; Ali, R.; Elabbasy, E.M. Third-order neutral differential equations of the mixed type: Oscillatory and asymptotic behavior. Math. Biosci. Eng. 2021, 19, 1649–1658. [Google Scholar] [CrossRef]
- Sui, Y.; Han, Z.L. Oscillation of third-order nonlinear delay dynamic equation with damping term on time scales. J. Appl. Math. Comput. 2018, 58, 577–599. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 2014, 409, 1093–1106. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Asymptotic behavior of an odd-order delay differential equation. Bound. Value Probl. 2014, 107, 2014. [Google Scholar] [CrossRef]
- Graef, J.R.; Savithri, R.; Thandapani, E. Oscillatory properties of third order neutral delay differential equations. Discrete Contin. Dyn. Syst. 2003, 9, 342–350. [Google Scholar]
- Zhang, Q.X.; Gao, L.; Yu, Y.H. Oscillation criteria for third-order neutral differential equations with continuously distributed delay. Appl. Math. Lett. 2012, 25, 1514–1519. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Tunc, E. Oscillatory behavior of a third-order neutral dynamic equation with distributed delays. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 14. [Google Scholar]
- Senel, M.T.; Utku, N. Oscillation behavior of third-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Filomat 2014, 28, 1211–1223. [Google Scholar] [CrossRef]
- Tian, Y.; Cai, Y.; Fu, Y.; Li, T. Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2015, 2015, 267. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Graef, J.R.; Tunc, E. On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term. Math. Slovaca 2017, 67, 501–508. [Google Scholar] [CrossRef]
- Grace, S.R. Oscillation criteria for third-order nonlinear delay differential equations with damping. Opusc. Math. 2015, 35, 485–497. [Google Scholar] [CrossRef]
- Aktas, M.F.; Ckmak, D.; Tiryaki, A. On the qualitative behaviors of solutions of third order nonlinear functional differential equations. Appl. Math. Lett. 2011, 24, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.H. Oscillation for first order superlinear delay differential equations. J. Lond. Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Philos, C.G. Oscillation theorems for linear differential equations of second order. Arch. Math. 1989, 53, 482–492. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. Third-Order Neutral Differential Equations with Damping and Distributed Delay: New Asymptotic Properties of Solutions. Symmetry 2022, 14, 2192. https://doi.org/10.3390/sym14102192
Al Themairi A, Qaraad B, Bazighifan O, Nonlaopon K. Third-Order Neutral Differential Equations with Damping and Distributed Delay: New Asymptotic Properties of Solutions. Symmetry. 2022; 14(10):2192. https://doi.org/10.3390/sym14102192
Chicago/Turabian StyleAl Themairi, A., Belgees Qaraad, Omar Bazighifan, and Kamsing Nonlaopon. 2022. "Third-Order Neutral Differential Equations with Damping and Distributed Delay: New Asymptotic Properties of Solutions" Symmetry 14, no. 10: 2192. https://doi.org/10.3390/sym14102192