New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments
Abstract
:1. Introduction
- (I1)
- where and does not vanish identically such that
- (I2)
- , and
2. Nonexistence of Decreasing Solutions
3. Nonexistence of Increasing Solutions
4. Philos-Type
5. Oscillation Criteria
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatewood, L.C.; Ackerman, E.; Rosevear, J.W.; Molnar, G.D. Modeling Blood Glucose Dynamics. Behav. Sci. 1970, 15, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Inequal. Appl. 2020, 69, 2020. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 160, 2020. [Google Scholar] [CrossRef]
- Sahiner, Y. On oscillation of second order neutral type delay differential equations. Comput. Math. Appl. 2004, 150, 697–706. [Google Scholar]
- Wang, P. Oscillation criteria for second-order neutra equations with distributed deviating arguments. Comput. Math. Appl. 2004, 47, 1935–1946. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Weng, P. Oscillation of second order neutral equations with distributed deviating argument. J. Comput. Appl. Math. 2007, 202, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Equ. 2011, 45, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Graef, J.R.; Tunc, E.; Grace, S.R. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc. Math. 2017, 37, 839–852. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Qaraad, B.; Abdeljawad, T.; Moaaz, O. Oscillation Criteria for a Class of Third-Order Damped Neutral Differential Equations. Symmetry 2020, 12, 1988. [Google Scholar] [CrossRef]
- Tang, X.H. Oscillation for first order superlinear delay differential equations. J. London Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Candan, T. Oscillation criteria and asymptotic properties of solutions of third-order nonlinear neutral differential equations. Math. Methods Appl. Sci. 2015, 38, 1379–1392. [Google Scholar] [CrossRef]
- Candan, T. Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations. Adv. Differ. Equ. 2014, 2014, 35. [Google Scholar] [CrossRef] [Green Version]
- Thandapani, E.; Tamilvanan, S.; Jambulingam, E.; Tech, V.T.M. Oscillation of third order half linear neutral delay differential equations. Int. J. Pure Appl. Math. 2012, 77, 359–368. [Google Scholar]
- Jiang, Y.; Li, T. Asymptotic behavior of a third-order nonlinear neutral delay differential equation. J. Inequal. Appl. 2014, 512, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, L.; Yu, Y. Oscillation criteria for third-order neutral differential equations with continuously distributed delay. Appl. Math. Lett. 2012, 25, 1514–1519. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Postolache, M. Improved Conditions for Oscillation of Functional Nonlinear Differential Equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Tian, Y.; Jiang, C.; Li, T. On the Asymptotic properties of nonlinear, third-order neutral delay differential equations with distributed deviating arguments. J. Funct. Spaces 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wanga, H.; Chen, G.; Jiang, Y.; Jiang, C.; Li, T. Asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Math. Computer Sci. 2017, 17, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Chen, Z.; Shi, W. New oscillation criteria for third-order neutral differential equations with continuously distributed delay. Appl. Math. Lett. 2018, 77, 64–71. [Google Scholar] [CrossRef]
- Senel, M.T.; Utku, N. Oscillation criteria for third-order neutral dynamic equations with continuously distributed delay. Adv. Differ. Equ. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.Z.; Cai, Y.L.; Fu, Y.L.; Li, T.X. Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2015, 267, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.M.; Jiang, Y.; Li, T.X. Asymptotic behavior of third-order differential equations with nonpositive neutral coefficients and distributed deviating arguments. Adv. Differ. Equ. 2016, 105, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Almarri, B.; Ali, A.H.; Al-Ghafri, K.S.; Almutairi, A.; Bazighifan, O.; Awrejcewicz, J. Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators. Symmetry 2022, 14, 566. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Lopes, A.M.; Bazighifan, O. Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions. Mathematics 2022, 10, 995. [Google Scholar] [CrossRef]
- Almarri, B.; Janaki, S.; Ganesan, V.; Ali, A.H.; Nonlaopon, K.; Bazighifan, O. Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term. Symmetry 2022, 14, 585. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Ali, A.H.; Meften, G.; Bazighifan, O.; Iqbal, M.; Elaskar, S.; Awrejcewicz, J. A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry 2022, 14, 682. [Google Scholar] [CrossRef]
- Abed Meften, G.; Ali, A.H.; Al-Ghafri, K.; Awrejcewicz, J.; Bazighifan, O. Nonlinear Stability and Linear Instability of Double-Diffusive Convection in a Rotating with LTNE Effects and Symmetric Properties: Brinkmann-Forchheimer Model. Symmetry 2022, 14, 565. [Google Scholar] [CrossRef]
- Rasheed, M.; Ali, A.H.; Alabdali, O.; Shihab, S.; Rashid, A.; Rashid, T.; Hamad, S.H.A. The Effectiveness of the Finite Differences Method on Physical and Medical Images Based on a Heat Diffusion Equation. J. Phys. Conf. Ser. 2021, 1999, 012080. [Google Scholar] [CrossRef]
- Qaraad, B.; Bazighifan, O.; Nofal, T.A.; Ali, A.H. Neutral differential equations with distribution deviating arguments: Oscillation conditions. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Thandapani, E.; Li, T. On The Oscillation of Third-Order Quasi-Linear Neutral Functional Differential Equations. Archivum Mathematicum. 2011, 47, 181–199. [Google Scholar]
- Li, B. Oscillation of first order delay differential equations. Am. Math. Soc. 1996, 124, 3729–3737. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Themairi, A.; Qaraad, B.; Bazighifan, O.; Nonlaopon, K. New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments. Symmetry 2022, 14, 2416. https://doi.org/10.3390/sym14112416
Al Themairi A, Qaraad B, Bazighifan O, Nonlaopon K. New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments. Symmetry. 2022; 14(11):2416. https://doi.org/10.3390/sym14112416
Chicago/Turabian StyleAl Themairi, A., Belgees Qaraad, Omar Bazighifan, and Kamsing Nonlaopon. 2022. "New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments" Symmetry 14, no. 11: 2416. https://doi.org/10.3390/sym14112416
APA StyleAl Themairi, A., Qaraad, B., Bazighifan, O., & Nonlaopon, K. (2022). New Conditions for Testing the Oscillation of Third-Order Differential Equations with Distributed Arguments. Symmetry, 14(11), 2416. https://doi.org/10.3390/sym14112416