Next Article in Journal
A Further Study on the Degree-Corrected Spectral Clustering under Spectral Graph Theory
Previous Article in Journal
Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Symmetry in Applied Continuous Mechanics 2022

1
Department of Mathematics and Computer Science Transilvania, University of Brașov, B-dul Eroilor 29, 500036 Brașov, Romania
2
Department of Mechanical Engineering, Faculty of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 29, 500036 Brașov, Romania
3
Romanian Academy of Technical Sciences, Calea Victoriei, 125, 010071 Bucharest, Romania
4
Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of Mathematics, King Abdulaziz University, Jeddah 21521, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2427; https://doi.org/10.3390/sym14112427
Submission received: 10 November 2022 / Accepted: 11 November 2022 / Published: 16 November 2022
(This article belongs to the Section Mathematics)

1. Introduction

Symmetry leading to interesting properties of mechanical systems has interesting properties and various applications in the field of engineering. There are many examples in which symmetry is applied in the design and calculus of symmetric mechanical systems, for example, in automotive engineering, airspace engineering, construction, and manufacturing [1,2,3,4,5,6,7,8,9,10]. All these factors prompt continuous research for the development of the field. Some of this research is presented in this volume, in which a large group of researchers are presenting their latest findings. We hope that researchers will find this an interesting and useful volume of information for their future work, and that the results will be also used by engineers for practical applications.

2. Statistics of the Special Issue

The statistics for this Special Issue related to published or rejected items were as follows [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]: 25 total submissions, 15 published papers (60%), and 10 rejected papers (40%). The geographical distribution of the authors of published papers is shown in Table 1, in which it can be seen that 50 authors are from seven different countries. Note that it is usual for a paper to have more than one author and for authors with different affiliations to collaborate.

3. Authors of the Special Issue

The authors of this Special Issue and their main affiliations are summarized in Table 2, and it can be seen that there are three authors on average per manuscript.

4. Brief Overview of the Contributions to the Special Issue

It was observed that there are three topics that dominated: symmetry in mechanical engineering, symmetry in applied mathematics, and symmetry in civil engineering.

Author Contributions

All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Vlase, S.; Nastac, C.; Marin, M.; Mihalcica, M. A Method for the Study of the Vibration of Mechanical Bars Systems with Symmetries. ACTA Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2017, 60, 539–544. [Google Scholar]
  2. Scutaru, M.L.; Vlase, S.; Marin, M.; Modrea, A. New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020, 1, 104. [Google Scholar] [CrossRef]
  3. Marin, M.; Ellahi, R.; Vlase, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 2020, 14, 534–540. [Google Scholar] [CrossRef] [Green Version]
  4. Vlase, S.; Marin, M.; Scutaru, M.L.; Munteanu, R. Coupled transverse and torsional vibrations in a mechanical system with two identical beams. AIP Adv. 2017, 7, 065301. [Google Scholar] [CrossRef]
  5. Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. Symmetry 2020, 12, 321. [Google Scholar] [CrossRef] [Green Version]
  6. Vlase, S.; Marin, M.; Ochsner, A. Considerations of the transverse vibration of a mechanical system with two identical bars. Proc. Inst. Mech. Eng. J. Mater. Des. Appl. 2019, 233, 1318–1323. [Google Scholar] [CrossRef]
  7. Abouelregal, A.E.; Marin, M. The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
  8. Abouelregal, A.E.; Marin, M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 2020, 12, 1276. [Google Scholar] [CrossRef]
  9. Zhang, L.; Bhatti, M.M.; Michaelides, E.; Marin, M.; Ellahi, R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur. Phys. J. Spec. Top. 2022, 231, 521–533. [Google Scholar] [CrossRef]
  10. Marin, M.; Chirila, A.; Oechsner, A.; Vlase, S. About finite energy solutions in thermoelasticity of micropolar bodies with voids. Bound. Value Probl. 2019, 2019, 89. [Google Scholar] [CrossRef]
  11. Vlase, S.; Ghiţescu, I.-M.; Paun, M. A Kinematical Analysis of the Flap and Wing Mechanism of a Light Sport Aircraft Using Topological Models. Symmetry 2021, 13, 1243. [Google Scholar] [CrossRef]
  12. Tong, Z.; Peng, Z.; Yue, Y.; Chen, Z. A SPH-GFDM Coupled Method for Elasticity Analysis. Symmetry 2021, 13, 1774. [Google Scholar] [CrossRef]
  13. Marin, M.; Vlase, S.; Chirila, A. The Influence of Voids in the Vibrations of Bodies with Dipolar Structure. Symmetry 2021, 13, 1804. [Google Scholar] [CrossRef]
  14. Itu, C.; Vlase, S.; Marin, M.; Toderiță, A. Use of the Symmetries in the Study of Vibration Response of a Hollow Cylinder. Symmetry 2021, 13, 2145. [Google Scholar] [CrossRef]
  15. Bencze, A.; Scutaru, M.L.; Marin, M.; Vlase, S.; Toderiță, A. Adder Box Used in the Heavy Trucks Transmission Noise Reduction. Symmetry 2021, 13, 2165. [Google Scholar] [CrossRef]
  16. Abdel-Khalek, S.; Khalil, E.M.; Alotaibi, H.; Abo-Dahab, S.M.; Mahmoud, E.E.; Higazy, M.; Marin, M. Effects of Energy Dissipation and Deformation Function on the Entanglement, Photon Statistics and Quantum Fisher Information of Three-Level Atom in Photon-Added Coherent States for Morse Potential. Symmetry 2021, 13, 2188. [Google Scholar] [CrossRef]
  17. Borza, P.N.; Vlase, S. Tracking and Monitoring of the Alignment System Used for Nuclear Physics Experiments. Symmetry 2022, 14, 47. [Google Scholar] [CrossRef]
  18. Aloafi, T.A.; Elhag, A.A.; Jawa, T.M.; Sayed-Ahmed, N.; Bayones, F.S.; Bouslimi, J.; Marin, M. Predication and Photon Statistics of a Three-Level System in the Photon Added Negative Binomial Distribution. Symmetry 2022, 14, 284. [Google Scholar] [CrossRef]
  19. Marin, M.; Vlase, S.; Craciun, E.M.; Pop, N.; Tuns, I. Some Results in the Theory of a Cosserat Thermoelastic Body with Microtemperatures and Inner Structure. Symmetry 2022, 14, 511. [Google Scholar] [CrossRef]
  20. Alghamdi, A.S.; Abd-Elmougod, G.A.; Kundu, D.; Marin, M. Statistical Inference of Jointly Type-II Lifetime Samples under Weibull Competing Risks Models. Symmetry 2022, 14, 701. [Google Scholar] [CrossRef]
  21. Șova, D.; Száva, R.I.; Jármai, K.; Száva, I.; Vlase, S. Modern Method to Analyze the Heat Transfer in a Symmetric Metallic Beam with Hole. Symmetry 2022, 14, 769. [Google Scholar] [CrossRef]
  22. Hobiny, A.; Abbas, I.; Alshehri, H.; Marin, M. Analytical Solutions of Nonlocal Thermoelastic Interaction on Semi-Infinite Mediums Induced by Ramp-Type Heating. Symmetry 2022, 14, 864. [Google Scholar] [CrossRef]
  23. Yakoubi, K.; Montassir, S.; Moustabchir, H.; Elkhalfi, A.; Scutaru, M.L.; Vlase, S. T-Stress Evaluation Based Cracking of Pipes Using an Extended Isogeometric Analysis (X-IGA). Symmetry 2022, 14, 1065. [Google Scholar] [CrossRef]
  24. Almuhayfith, F.E.; Darwish, J.A.; Alharbi, R.; Marin, M. Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode. Symmetry 2022, 14, 1298. [Google Scholar] [CrossRef]
  25. Száva, R.-I.; Bolló, B.; Bencs, P.; Jármai, K.; Száva, I.; Popa, G.; Asztalos, Z.; Vlase, S. Experimental and Numerical Studies of the Heat Transfer in Thin-Walled Rectangular Tubes under Fire. Symmetry 2022, 14, 1781. [Google Scholar] [CrossRef]
Table 1. Geographic distribution by countries of authors.
Table 1. Geographic distribution by countries of authors.
CountryNumber of Authors
Romania18
Saudi Arabia17
Morocco4
China4
India1
Egypt3
Hungary3
Total50
Table 2. Affiliations and bibliometric indicators for authors.
Table 2. Affiliations and bibliometric indicators for authors.
AuthorAffiliationNo. of PapersReferences
Renáta-Ildikó SzávaTransilvania University of Brasov, Romania2[11,15]
Betti BollóUniversity of Miskolc, 3515 Miskolc, Hungary1[11]
Péter BencsUniversity of Miskolc, 3515 Miskolc, Hungary1[11]
Károly JármaiUniversity of Miskolc, 3515 Miskolc, Hungary2[11,15]
Ioan SzávaTransilvania University of Brasov, Romania2[11,15]
Gabriel PopaTransilvania University of Brasov, Romania1[11]
Zsolt AsztalosTransilvania University of Brasov, Romania1[11]
Sorin VlaseTransilvania University of Brasov, Romanian Academy of Technical Sciences, Bucharest, Romania 9[11,13,15,19,21,22,23,25]
Fatimah E. AlmuhayfithCollege of Sciences, King Faisal University, Alahsa 31982, Saudi Arabia1[12]
Jumanah Ahmed Darwish College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia1[12]
Randa AlharbiFaculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia1[12]
Marin MarinTransilvania University of Brasov, Romania9[12,14,16,18,20,21,22,23]
Khadija YakoubiSidi Mohamed Ben Abdellah University, Fez 30000, Morocco1[13]
Soufiane MontassirSidi Mohamed Ben Abdellah University, Fez 30000, Morocco 1[13]
Hassane MoustabchirNational School of Applied Sciences of Fez, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco1[13]
Ahmed ElkhalfiSidi Mohamed Ben Abdellah University, Fez 30000, Morocco1[13]
Maria Luminita ScutaruTransilvania University of Brasov, Romania2[13,21]
Aatef Hobiny King Abdulaziz University, Jeddah 21577, Saudi Arabia1[14]
Ibrahim Abbas King Abdulaziz University, Jeddah 21577, Saudi Arabia
Faculty of Science, Sohag University, Sohag 82511, Egypt
1[14]
Hashim Alshehri King Abdulaziz University, Jeddah 21577, Saudi Arabia1[14]
Daniela ȘovaTransilvania University of Brasov, Romania1[15]
Abdulaziz S. AlghamdiKing Abdulaziz University, Rabigh 21911, Saudi Arabia1[16]
Gamal Amin Abd-ElmougodDamanhour University, Damanhour 22511, Egypt1[16]
Debasis Kundu Indian Institute of Technology, Kanpur 208016, India1[16]
Eduard M. CraciunOvidius University of Constanta, 900527 Constanta, Romania1[17]
Nicolae PopInstitute of Solid Mechanics of Romanian Academy, 010141 Bucharest, Romania1[17]
Ioan TunsTransilvania University of Brasov, Romania1[17]
Tahani A. AloafiTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Azhari A. ElhagTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Taghreed M. JawaTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Neveen Sayed-AhmedTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Fatimah S. BayonesTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Jamel BouslimiTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[18]
Paul Nicolae BorzaTransilvania University of Brasov, Romania1[19]
Sayed Abdel-KhalekTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[20]
Eied M. KhalilTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[20]
Hammad AlotaibiTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[20]
Sayed M. Abo-Dahab
Luxor University, Luxor 85951, Egypt
South Valley University, Qena 83523, Egypt
1[20]
Emad E. MahmoudTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[20]
Mahmoud HigazyTaif University, P.O. Box 11099, Taif 21944, Saudi Arabia1[20]
Andrei BenczeTransilvania University of Brasov, Romania1[21]
Ana ToderițăTransilvania University of Brasov, Romania2[21,22]
Călin ItuTransilvania University of Brasov, Romania1[22]
Adina ChirilaTransilvania University of Brasov, Romania1[23]
Zheming TongZhejiang University, Hangzhou 310027, China1[24]
Zezhao PengZhejiang University, Hangzhou 310027, China1[24]
Yuqing YueZhejiang University, Hangzhou 310027, China1[24]
Zhou ChenZhejiang University, Hangzhou 310027, China1[24]
Ion-Marius GhiţescuTransilvania University of Brasov, Romania1[25]
Marius PaunTransilvania University of Brasov, Romania1[25]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Marin, M.; Vlase, S.; Abbas, I.A. Symmetry in Applied Continuous Mechanics 2022. Symmetry 2022, 14, 2427. https://doi.org/10.3390/sym14112427

AMA Style

Marin M, Vlase S, Abbas IA. Symmetry in Applied Continuous Mechanics 2022. Symmetry. 2022; 14(11):2427. https://doi.org/10.3390/sym14112427

Chicago/Turabian Style

Marin, Marin, Sorin Vlase, and Ibrahim A. Abbas. 2022. "Symmetry in Applied Continuous Mechanics 2022" Symmetry 14, no. 11: 2427. https://doi.org/10.3390/sym14112427

APA Style

Marin, M., Vlase, S., & Abbas, I. A. (2022). Symmetry in Applied Continuous Mechanics 2022. Symmetry, 14(11), 2427. https://doi.org/10.3390/sym14112427

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop