Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering
Abstract
:1. Introduction
2. Partial Least Squares Method for Estimating SEM Parameters
Algorithm 1 PLS Algorithm [19] |
Step 1: Estimate the weights and scores of latent variables using the following process. The inputs of this algorithm are the indicators and the initial value . The following steps (1–4) will be repeated until the weights of the indicators converge. |
|
Step 2. Estimate path and loading coefficients using the ordinary least squares method. |
Step 3. Estimate location parameter. |
3. Proposed Method
3.1. Segmentation in SEM Using a Combination of Partial Least Squares and Modified Fuzzy Clustering
3.2. Parameter Estimation of the Inner and Outer Model
3.3. Fuzzy Membership and PLSMFC Algorithm
Algorithm 2 PLSMFC Algorithm (author’s own contribution) |
Step 1: Estimate the weights and scores of latent variables using all data. The input of this algorithm is the indicators data and the initial value . The following steps (1–4) are repeated until the weights of the indicators converge. |
|
Step 2. Set the number of segments C, the initial fuzzy membership value of the n-th object in the segment c (ucn), and . Step 3. Estimate path and loading coefficients using Equations (17)–(19). Step 4. Calculate the residual of the inner model and outer model in the c-th segment using Equations (20)–(22). Step 5. Update the fuzzy membership value for the n-th observation in the c-segment using Equation (24). Step 6. Calculate the objective functions (F) using Equation (13). Step 7. If , go to step 8. Otherwise, go back to step 3.Step 8. Repeat stages 1 through 7 for a different number of segments. |
4. Results and Discussions
4.1. Design of Simulation and Data Generating Process
4.2. Simulation Results
4.3. Application on Real Data
4.4. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full Form |
SEM | Structural Equation Modeling |
PLS | Partial Least Squares |
PLS GAS | GAS Partial Least Squares Genetic Algorithm Segmentation |
REBUS-PLS | Response Based Units Segmentation Partial Least Squares |
PLSMFC | Partial Least Squares and Modified Fuzzy Clustering |
FIMIX PLS | Finite Mixture Partial Least Squares |
FPI | Fuzziness Performance Index |
NCE | Normalized Classification Entropy |
References
- Vinzi, V.E.; Trinchera, L.; Amato, S. PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In Handbook of Partial Least Squares: Concepts, Methods and Application; Vinzi, V.E., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: New York, NY, USA, 2010; pp. 47–82. [Google Scholar] [CrossRef]
- Joreskog, K.G.; Sorbom, D.A.G. Recent Developments in Structural Equation Modeling. J. Mark. Res. 1982, 19, 404–416. [Google Scholar] [CrossRef]
- Steenkamp, J.E.M.; Baumgartner, H. On the use of structural equation models for marketing modeling. Int. J. Res. Mark. 2000, 17, 195–202. [Google Scholar] [CrossRef]
- Aktepe, A.; Ersöz, S.; Toklu, B. Computers & Industrial Engineering Customer satisfaction and loyalty analysis with classification algorithms and Structural Equation Modeling. Comput. Ind. Eng. 2015, 86, 95–106. [Google Scholar]
- Chakraborty, S.; Sengupta, K. Structural equation modelling of determinants of customer satisfaction of mobile network providers: Case of Kolkata. IIMB Manag. Rev. 2014, 26, 234–248. [Google Scholar] [CrossRef] [Green Version]
- Seddig, D.; Lomazzi, V. Using cultural and structural indicators to explain measurement noninvariance in gender role attitudes with multilevel structural equation modeling. Soc. Sci. Res. 2019, 84, 102328. [Google Scholar] [CrossRef]
- Bai Gokarna, V.; Mendon, S.; Thonse Hawaldar, I.; Spulbar, C.; Birau, R.; Nayak, S.; Manohar, M. Exploring the antecedents of institutional effectiveness: A case study of higher education universities in India. Econ. Res. Istraz. 2022, 35, 1162–1182. [Google Scholar] [CrossRef]
- Hair, J.; Alamer, A. Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Burić, I.; Kim, L.E. Teacher self-efficacy, instructional quality, and student motivational beliefs: An analysis using multilevel structural equation modeling. Learn. Instr. 2020, 66, 101302. [Google Scholar] [CrossRef]
- Fauzi, A.; Hidayat, N.R.; Otok, B.W.; Waluyo, M. Clustering partial least square in lecturer achievement index (LAI) based on student perception of UPN ‘Veteran’ Surabaya. Int. J. Mech. Eng. Technol. 2018, 9, 273–284. [Google Scholar]
- Otok, B.W.; Sustrami, D.; Hastuti, P.; Purnami, S.W.; Suharsono, A. Structural equation modeling the environment, psychology, social relationships against physical health in determination quality of elderly community surabaya. Int. J. Civ. Eng. Technol. 2018, 9, 926–938. [Google Scholar]
- Kang, W.; Shao, B. The impact of voice assistants’ intelligent attributes on consumer well-being: Findings from PLS-SEM and fsQCA. J. Retail. Consum. Serv. 2023, 70, 103130. [Google Scholar] [CrossRef]
- Chuah, S.H.W.; Tseng, M.L.; Wu, K.J.; Cheng, C.F. Factors influencing the adoption of sharing economy in B2B context in China: Findings from PLS-SEM and fsQCA. Res. Conserv. Recycl. 2021, 175, 105892. [Google Scholar] [CrossRef]
- Hidayat, R.N.; Poernomo, E.; Waluyo, M.; Otok, B.W. The model of risk of travel ticket purchasing decisions on marketing communication mix in online site using structural equation modeling. Int. J. Civ. Eng. Technol. 2018, 9, 847–856. [Google Scholar]
- Hu, Z.; Ding, S.; Li, S.; Chen, L.; Yang, S. Adoption intention of fintech services for bank users: An empirical examination with an extended technology acceptance model. Symmetry 2019, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Mican, D.; Sitar-Tăut, D.A.; Mihuţ, I.S. User behavior on online social networks: Relationships among social activities and satisfaction. Symmetry 2020, 12, 1656. [Google Scholar] [CrossRef]
- Nicolas, C.; Kim, J.; Chi, S. Quantifying the dynamic effects of smart city development enablers using structural equation modeling. Sustain. Cities Soc. 2020, 53, 101916. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Lohmöller, J.B. Latent Variable Path Modeling with Partial Least Squares; Physica-Verlag HD: Berlin, Germany, 2013. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Hahn, C.; Johnson, M.D.; Herrmann, A.; Huber, F. Capturing Customer Heterogeneity using a Finite Mixture PLS Approach. Schmalenbach Bus. Rev. 2002, 54, 243–269. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Sarsted, M.; Matthews, L.M.; Ringle, C.M. Identifying and treating unobserved heterogeneity with FIMIX-PLS: Part I–method. Eur. Bus. Rev. 2016, 28, 63–76. [Google Scholar] [CrossRef]
- Jedidi, K.; Jagpal, H.S.; Desarbo, W.S. Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity. Mark. Sci. 1997, 16, 39–59. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M. Treating unobserved heterogeneity in PLS path modelling: A comparison of FIMIX-PLS with different data. J. Appl. Stat. 2010, 37, 1299–1318. [Google Scholar] [CrossRef]
- Schlittgen, R.; Ringle, C.M.; Sarstedt, M.; Becker, J. Segmentation of PLS path models by iterative reweighted regressions. J. Bus. Res. 2016, 69, 4583–4592. [Google Scholar] [CrossRef] [Green Version]
- Vinzi, V.E.; Lauro, C.N.; Amato, S. PLS Typological Regression: Algorithmic, Classification and Validation Issues. In New Developments in Classification and Data Analysis: Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society; University of Bologna: Bologna, Italy, 2003; pp. 133–140. [Google Scholar]
- Vinzi, V.E.; Trinchera, L.; Squillacciotti, S.; Tenenhaus, M. REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling. Appl. Stoch. Model. Bus. Ind. 2008, 24, 439–458. [Google Scholar] [CrossRef]
- Ansari, A.; Jedidi, K.; Jagpal, S. A Hierarchical Bayesian Treating Equation Methodology for Structural Models in Heterogeneity. Mark. Sci. 2014, 19, 328–347. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Schlittgen, R. Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectr. 2014, 36, 251–276. [Google Scholar] [CrossRef]
- Bhagat, A.; Kshirsagar, N.; Khodke, P.; Dongre, K.; Ali, S. Penalty Parameter Selection for Hierarchical Data Stream Clustering. Procedia Comput. Sci. 2016, 79, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Berget, I.; Mevik, B.H.; Næs, T. New modifications and applications of fuzzy C-means methodology. Comput. Stat. Data Anal. 2008, 52, 2403–2418. [Google Scholar] [CrossRef]
- Krishnapuram, R.; Keller, J.M. A Possibilistic Approach to Clustering. IEEE Trans. Fuzzy Syst. 1993, 1, 98–110. [Google Scholar] [CrossRef]
- Nayak, J.; Behera, H.S.; Naik, B. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In Smart Innovation, Systems and Technologies; Springer: New Delhi, India, 2015; Volume 32. [Google Scholar] [CrossRef]
- Hwang, H.; DeSarbo, W.S.; Takane, Y. Fuzzy Clusterwise Generalized Structured Component Analysis. Psychometrika 2007, 72, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Pan, Z.; Pedrycz, W.; Ren, F.; Song, X. Viewpoint-Based Kernel Fuzzy Clustering with Weight Information Granules. IEEE Trans. Emerg. Top. Comput. Intell. 2022. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X. A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion. Expert Syst. Appl. 2022, 209, 118280. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Fan, R.; Wang, Z. Deviation-sparse fuzzy C-means with neighbor information constraint. IEEE Trans. Fuzzy Syst. 2019, 27, 185–199. [Google Scholar] [CrossRef]
- Wei, H.; Chen, L.; Chen, C.L.P.; Duan, J.; Han, R.; Guo, L. Fuzzy clustering for multiview data by combining latent information. Appl. Soft Comput. 2022, 126, 109140. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. In Modern Methods for Business Research; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Wedel, M.; Steenkamp, J.B.E.M. A fuzzy clusterwise regression approach to benefit segmentation. Int. J. Res. Mark. 1989, 6, 241–258. [Google Scholar] [CrossRef]
- Wedel, M. Clusterwise Regression and Market Segmentation Developments and Applications; Toxicology and Nutrition Institute: Zeist, Netherlands, 1986. [Google Scholar]
- Ryoo, J.H.; Park, S.; Kim, S.; Ryoo, H.S. Efficiency of cluster validity indexes in fuzzy clusterwise generalized structured component analysis. Symmetry 2020, 12, 1514. [Google Scholar] [CrossRef]
Parameter | Segment 1 | Segment 2 | Segment 3 |
---|---|---|---|
0.50 | 0.65 | 0.80 | |
0.55 | 0.70 | 0.85 | |
0.60 | 0.75 | 0.90 | |
0.50 | 0.65 | 0.80 | |
0.55 | 0.70 | 0.85 | |
0.60 | 0.75 | 0.90 | |
0.50 | 0.65 | 0.80 | |
0.55 | 0.70 | 0.85 | |
0.60 | 0.75 | 0.90 | |
0.50 | 0.70 | 0.90 | |
0.50 | 0.70 | 0.90 |
Parameter | Mean Parameter Estimates | |||
---|---|---|---|---|
N = 50 | N = 200 | N = 1000 | ||
Segment 1 | ||||
0.50 | 0.5009 | 0.5018 | 0.5009 | |
0.55 | 0.5497 | 0.5514 | 0.5513 | |
0.60 | 0.6003 | 0.6019 | 0.6010 | |
0.50 | 0.5004 | 0.5011 | 0.5008 | |
0.55 | 0.5516 | 0.5514 | 0.5512 | |
0.60 | 0.6026 | 0.6014 | 0.6010 | |
0.50 | 0.5003 | 0.5014 | 0.5024 | |
0.55 | 0.5522 | 0.5507 | 0.5511 | |
0.60 | 0.6029 | 0.6019 | 0.6011 | |
0.50 | 0.5004 | 0.5014 | 0.5007 | |
0.50 | 0.502 | 0.5002 | 0.5006 | |
Segment 2 | ||||
0.65 | 0.6492 | 0.6497 | 0.6488 | |
0.70 | 0.6999 | 0.6987 | 0.6988 | |
0.75 | 0.7497 | 0.7488 | 0.7485 | |
0.65 | 0.6474 | 0.6491 | 0.6484 | |
0.70 | 0.6973 | 0.6979 | 0.6990 | |
0.75 | 0.7482 | 0.7478 | 0.7490 | |
0.65 | 0.6503 | 0.6495 | 0.6496 | |
0.70 | 0.6987 | 0.6997 | 0.6995 | |
0.75 | 0.7500 | 0.7495 | 0.7493 | |
0.70 | 0.6991 | 0.6990 | 0.6989 | |
0.70 | 0.6968 | 0.6991 | 0.6990 | |
Hit Ratio | 97.94% | 98.08% | 98.03% |
Parameter | Mean Parameter Estimates | |||
---|---|---|---|---|
N = 50 | N = 200 | N = 1000 | ||
Segment 1 | ||||
0.50 | 0.4995 | 0.4998 | 0.5006 | |
0.55 | 0.5506 | 0.5507 | 0.5506 | |
0.60 | 0.5985 | 0.6005 | 0.6005 | |
0.50 | 0.5006 | 0.5008 | 0.5002 | |
0.55 | 0.5509 | 0.5502 | 0.5506 | |
0.60 | 0.6006 | 0.5995 | 0.6002 | |
0.50 | 0.5006 | 0.5014 | 0.500 | |
0.55 | 0.5509 | 0.5501 | 0.5510 | |
0.60 | 0.6007 | 0.6007 | 0.6008 | |
0.50 | 0.5007 | 0.5005 | 0.5004 | |
0.50 | 0.5004 | 0.5001 | 0.5010 | |
Segment 2 | ||||
0.65 | 0.6500 | 0.6496 | 0.6493 | |
0.70 | 0.7007 | 0.7001 | 0.6997 | |
0.75 | 0.7492 | 0.7500 | 0.7498 | |
0.65 | 0.6516 | 0.6501 | 0.6494 | |
0.70 | 0.6987 | 0.7002 | 0.6998 | |
0.75 | 0.7498 | 0.7497 | 0.7493 | |
0.65 | 0.6499 | 0.6499 | 0.6500 | |
0.70 | 0.6986 | 0.7004 | 0.6999 | |
0.75 | 0.7509 | 0.7496 | 0.7502 | |
0.70 | 0.7012 | 0.6997 | 0.6998 | |
0.70 | 0.700 | 0.6999 | 0.6998 | |
Hit Ratio | 97.92% | 98.09% | 98.19% |
Segment | Loading/Path Coefficient | Bootstrap Standard Error | Bootstrap Critical Ratio | Significance |
---|---|---|---|---|
Segment 1 | ||||
Outer Loading | ||||
Social Psych_Test1 | 0.8640 | 0.0464 | 18.6385 | Yes |
Social Psych_Test2 | 0.9547 | 0.0538 | 17.7607 | Yes |
Intellect Years_Edu | 0.8245 | 0.0086 | 95.8112 | Yes |
Intellect IQ | 0.8838 | 0.0069 | 128.372 | Yes |
Motivation Hrs_Train | 0.9225 | 0.0294 | 31.3326 | Yes |
Motivation Hrs_Work | 0.9796 | 0.0251 | 39.0129 | Yes |
Job_Perform Client_Sat | 0.3760 | 0.2693 | 1.3962 | No |
Job_Perform Super_Sat | 1.0157 | 0.0802 | 12.6617 | Yes |
Job_Perform Project_Compl | 0.9887 | 0.1983 | 4.9868 | Yes |
Path Coefficient | ||||
Social Job_Perform | 0.5191 | 0.0259 | 20.0107 | Yes |
Intellect Job_Perform | 0.1113 | 0.0102 | 10.8679 | Yes |
Motivation Job_Perform | 0.8179 | 0.0131 | 60.4351 | Yes |
Segment 2 | ||||
Outer Loading | ||||
Social Psych_Test1 | 0.9566 | 0.0464 | 20.6368 | Yes |
Social Psych_Test2 | 0.8473 | 0.0538 | 15.7623 | Yes |
Intellect Years_Edu | 0.8073 | 0.0086 | 93.8128 | Yes |
Intellect IQ | 0.8975 | 0.0069 | 130.3702 | Yes |
Motivation Hrs_Train | 0.9813 | 0.0294 | 33.331 | Yes |
Motivation Hrs_Work | 0.9294 | 0.0251 | 37.0146 | Yes |
Job_Perform Client_Sat | 0.9142 | 0.2693 | 3.3945 | Yes |
Job_Perform Super_Sat | 0.8554 | 0.0802 | 10.6634 | Yes |
Job_Perform Project_Compl | 0.5925 | 0.1983 | 2.9885 | Yes |
Path Coefficient | ||||
Social Job_Perform | 0.5710 | 0.0259 | 22.0090 | Yes |
Intellect Job_Perform | 0.1318 | 0.0102 | 12.8662 | Yes |
Motivation Job_Perform | 0.7917 | 0.0131 | 62.4351 | Yes |
Segment | Loading/Path Coefficient | Bootstrap Standard Error | Bootstrap Critical Ratio | Significance |
---|---|---|---|---|
Segment 1 | ||||
Outer Loading | ||||
Social Psych_Test1 | 0.9166 | 0.0005 | 1667.0259 | Yes |
Social Psych_Test2 | 0.8688 | 0.0002 | 4244.2827 | Yes |
Intellect Years_Edu | 0.7735 | 0.0275 | 28.1621 | Yes |
Intellect IQ | 0.9150 | 0.0267 | 34.3155 | Yes |
Motivation Hrs_Train | 0.9655 | 0.0007 | 1290.4154 | Yes |
Motivation Hrs_Work | 0.9763 | 0.0003 | 3749.5041 | Yes |
Job_Perform Client_Sat | 0.7645 | 0.0208 | 36.7085 | Yes |
Job_Perform Super_Sat | 0.9293 | 0.0002 | 4233.9560 | Yes |
Job_Perform Project_Compl | 0.9087 | 0.0094 | 96.7496 | Yes |
Path Coefficient | ||||
Social Job_Perform | 0.5218 | 0.0036 | 145.8676 | Yes |
Intellect Job_Perform | 0.1203 | 0.0029 | 40.8461 | Yes |
Motivation Job_Perform | 0.7400 | 0.0080 | 92.4914 | Yes |
Segment 2 | ||||
Outer Loading | ||||
Social Psych_Test1 | 0.9358 | 0.0003 | 2697.4705 | Yes |
Social Psych_Test2 | 0.9059 | 0.0002 | 4067.5193 | Yes |
Intellect Years_Edu | 0.7835 | 0.0920 | 8.5134 | Yes |
Intellect IQ | 0.8469 | 0.0380 | 22.2688 | Yes |
Motivation Hrs_Train | 0.9258 | 0.0013 | 701.0146 | Yes |
Motivation Hrs_Work | 0.9415 | 0.0005 | 1928.7409 | Yes |
Job_Perform Client_Sat | 0.7110 | 0.0098 | 72.5408 | Yes |
Job_Perform Super_Sat | 0.9524 | 0.0003 | 3686.7002 | Yes |
Job_Perform Project_Compl | 0.6868 | 0.0113 | 61.0473 | Yes |
Path Coefficient | ||||
Social Job_Perform | 0.6659 | 0.0054 | 122.2898 | Yes |
Intellect Job_Perform | 0.0737 | 0.0066 | 11.1178 | Yes |
Motivation Job_Perform | 0.7141 | 0.0116 | 61.4591 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukid, M.A.; Otok, B.W.; Suharsono, A. Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering. Symmetry 2022, 14, 2431. https://doi.org/10.3390/sym14112431
Mukid MA, Otok BW, Suharsono A. Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering. Symmetry. 2022; 14(11):2431. https://doi.org/10.3390/sym14112431
Chicago/Turabian StyleMukid, Moch Abdul, Bambang Widjanarko Otok, and Agus Suharsono. 2022. "Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering" Symmetry 14, no. 11: 2431. https://doi.org/10.3390/sym14112431
APA StyleMukid, M. A., Otok, B. W., & Suharsono, A. (2022). Segmentation in Structural Equation Modeling Using a Combination of Partial Least Squares and Modified Fuzzy Clustering. Symmetry, 14(11), 2431. https://doi.org/10.3390/sym14112431