Next Article in Journal
Symmetrical Control Law for Chaotization of Platform Vibrations
Next Article in Special Issue
A Computational Scheme for the Numerical Results of Time-Fractional Degasperis–Procesi and Camassa–Holm Models
Previous Article in Journal
A Novel Software Trustworthiness Evaluation Strategy via Relationships between Criteria
Previous Article in Special Issue
Some Formulas and Recurrences of Certain Orthogonal Polynomials Generalizing Chebyshev Polynomials of the Third-Kind
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some Asymptotic Expansions for the Gamma Function

1
Mathematics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Mathematics Department, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2459; https://doi.org/10.3390/sym14112459
Submission received: 8 November 2022 / Revised: 15 November 2022 / Accepted: 18 November 2022 / Published: 20 November 2022

Abstract

:
Inequalities play a fundamental role in both theoretical and applied mathematics and contain many patterns of symmetries. In many studies, inequalities have been used to provide estimates of some functions based on the properties of their symmetry. In this paper, we present the following new asymptotic expansion related to the ordinary gamma function Γ ( 1 + w ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 exp r = 1 μ r w r , w , with the recurrence relation of coefficients μ r . Furthermore, we use Padé approximants and our new asymptotic expansion to deduce the new bounds of Γ ( w ) better than some of its recent ones.

1. Introduction

Stirling’s formula
Γ ( w + 1 ) 2 π w w e w , w
is the most well known and used approximation formula for dealing with large factorials [1,2,3]. There are many researchers who have gone to great lengths to create more accurate approximations of n ! and its natural Gamma function extension Γ ( w ) , where Γ ( w ) = 0 e r r w 1 d r ; w > 0 . For example, the Stirling series is stated as follows [4]:
Γ ( w + 1 ) 2 π w w e w exp s = 1 B 2 s 2 s ( 2 s 1 ) w 2 s 1 , w
which is an extension of Formula (1), where constants B 2 s , s { 0 , 1 , 2 , . . . } , are Bernoulli numbers. Another asymptotic formula is given by Laplace [4].
Γ ( 1 + w ) 2 π w w e w 1 + 1 12 w + 1 288 w 2 139 51 , 840 w 3 571 2 , 488 , 320 w 4 + . . . , w .
Burnside [5] presents the next most accurate approximation of Formula (1).
Γ ( w + 1 ) 2 π w 2 w + 1 2 e w + 1 / 2 , w .
Moreover, there are two important approximations that are better than Burnside’s Formula (4). The first one is due to Ramanujan [6]:
Γ ( w + 1 ) π w e w 8 w 3 + 4 w 2 + w + 1 30 6 , w
which presents a refinement of Stirling’s Formula (1) and was recorded in the book “The lost notebook and other unpublished papers” as a conjecture of Ramanujan based on some numerical calculations (see also [6,7,8,9,10]). The other one is due to Gosper [2].
Γ ( w + 1 ) 2 π w + 1 / 6 w e w , w .
Starting from the Ramanujan Formula (5), Karatsuba presented [8] for w that
Γ ( w + 1 ) π w / e w 8 w 3 + 4 w 2 + w + 1 30 11 240 w + 79 3360 w 2 + 3539 201 , 600 w 3 + . . . 1 / 6 .
Mortici [11] improved the Ramanujan Formula (5) by the asymptotic formula:
Γ ( w + 1 ) π w / e w 8 w 3 + 4 w 2 + w + 1 30 1 / 6 exp 11 11520 w 4 + 13 3440 w 5 + 1 691200 w 6 + . . . , w
which is faster than Formula (7). In 2002, in a web post, Robert H. Windschitl pointed out that the following is the case [12] (see also [13]).
Γ ( w + 1 ) = 2 π w w / e w w sinh w 1 w / 2 1 + O 1 w 5 , w .
Motivated by (9), Alzer [14] deduced the following double inequality:
2 π w w / e w w sinh w 1 w / 2 1 + θ w 5 < Γ ( w + 1 ) < 2 π w w / e w w sinh w 1 w / 2 1 + η w 5 , w > 0
with θ = 0 and η = 1 1620 being the best possible constants. Lu et al. [15] deduced the following extended formula to Windschitl’s formula:
Γ ( w + 1 ) 2 π w w / e w w sinh 1 w + θ 7 w 7 + θ 9 w 9 + θ 11 w 11 + . . . w / 2 , w
where θ 7 = 1 / 810 , θ 9 = 67 / 42525 , and θ 11 = 19 / 8505 . Chen [16] presented the following asymptotic expansion of the Gamma function related to Windschitl’s formula:
Γ ( w + 1 ) 2 π w w / e w w sinh w 1 w / 2 + k = 0 τ k w k , w
with a recurrence relation for determining coefficients τ k . Motivated by the above results, Yang and Tian [17] provided a more accurate Windschitl-type approximation:
Γ ( w + 1 ) 2 π w w / e w w sinh w 1 w / 2 e 7 324 1 w 3 ( 35 w 2 + 33 ) , w .
They developed Windschitl’s approximation formula by giving two asymptotic expansions [18]:
Γ ( w + 1 ) 2 π w w / e w w sinh w 1 w / 2 exp k = 3 s k w 2 k 1 , w
where s k = 2 k ( 2 k 2 ) ! 2 2 k 1 2 k ( 2 k ) ! B 2 k and
Γ ( w + 1 ) 2 π w w / e w w sinh w 1 w / 2 1 + k = 1 δ k w k , w
where δ k = 1 k r = 1 k 1 r + 1 2 r ( r + 1 ) 2 ( r 1 ) ! B r + 1 δ k r . Moreover, they [19] deduced the following family of high accurate approximation formulas for q 33 / 35
Γ ( w + 1 ) 2 π w w / e w w sinh w 1 w / 2 exp 1 1620 w 5 w 2 + q w 2 + q + 33 / 35 , w .
Finally, they presented four new Windschitl-type approximation formulas [20]. Nemes [21] deduced that
Γ ( w + 1 ) = 2 π w w / e w 1 + 1 12 w 2 1 / 10 w 1 + O w 5 , w
which is much simpler than (9), and they have the same number of exact digits. Formulas (9) and (17) are stronger Ramanujan formulas. Starting from Nemes’s Formula (17), Mortici [22] constructed the continued fraction approximation:
Γ ( w + 1 ) 2 π w e w w + 1 12 w + 1 10 w + φ 1 w + φ 2 w + φ 3 w + w ,
where φ 1 = 2369 252 , φ 2 = 2117009 1193976 , and φ 3 = 393032191511 1324011300744 , . For more details about Gamma function applications, see [23,24] and the references therein.
For the rest of this paper, we will present two new asymptotic formulas for Γ ( w + 1 ) depending on Windschitl (9) and Nemes’s (17) asymptotic formulas.

2. Lemmas

In sequel, the following results are required in our conclusions.
Lemma 1 
([25]). If we have the asymptotic expansion
h ( w ) 1 + p = 1 α p w p , w ,
then we obtain the following asymptotic expansion
ln h ( w ) p = 1 β p w p ,
where
β p = α p 1 p r = 1 p 1 r β r α p r , p N .
Lemma 2 
([25]). If we have the asymptotic expansion
h ( w ) p = 1 α p w p , w ,
then we obtain the following asymptotic expansion
exp h ( w ) 1 + p = 1 β p w p ,
where
β p = 1 p r = 1 p r β p r α r , p N .
Lemma 3 
([26]). If { ζ p } p N is a null sequence, s R and n > 1 such that
lim p p n ( ζ p ζ p + 1 ) = s ,
then we have
lim p p n 1 ζ p = s n 1 .
Lemma 4 
([27]). Let the real-valued function λ ( ρ ) defined for ρ > ρ 0 and lim ρ λ ( ρ ) = 0 . If λ ( ρ + a ) < λ ( ρ ) , a N , then λ ( ρ ) > 0 for ρ > ρ 0 ; if λ ( ρ + a ) > λ ( ρ ) , a N , then λ ( ρ ) < 0 for ρ > ρ 0 .

3. Main Results

To obtain the best possible constants t 1 and t 2 in the approximation formula
n ! 2 π n n e n n 2 + t 1 n 2 + t 2 n / 2 , n ,
we define a sequence R n that satisfies
n ! = 2 π n n e n n 2 + t 1 n 2 + t 2 n / 2 e R n , n 1 .
Then,
R n R n + 1 = 6 t 1 + 6 t 2 + 1 12 n 2 + 6 t 1 6 t 2 1 12 n 3 + 30 t 1 2 20 t 1 30 t 2 2 + 20 t 2 + 3 40 n 4 + 45 t 1 2 + 15 t 1 + 45 t 2 2 15 t 2 2 30 n 5 + 70 t 1 3 + 210 t 1 2 42 t 1 + 70 t 2 3 210 t 2 2 + 42 t 2 + 5 84 n 6 + O ( n 13 / 2 ) .
If 6 t 1 + 6 t 2 + 1 0 , then sequence R n R n + 1 has a rate of worse than n 2 . So, we will consider t 2 = t 1 1 6 . Moreover, to increase the rate of convergence, we use 30 t 1 2 20 t 1 30 t 2 2 + 20 t 2 + 3 = 0 and then t 1 = 7 60 and t 2 = 1 20 . Now, by Lemma 3, we obtain the following result.
Lemma 5. 
The sequence is as follows:
R n = ln n ! n 2 + 7 60 n 2 1 20 n / 2 2 π n n e n = O ( n 5 ) , n
where
lim n R n R n + 1 n 6 = 461 181440 .
Theorem 1. 
The Gamma function has the following asymptotic expansion:
Γ ( w + 1 ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 exp r = 1 μ r w r , w
where μ r are given by
μ r = B r + 1 r ( r + 1 ) 1 2 ν r + 1 , r = 1 , 2 , 3 , . . .
where B r denote Bernoulli numbers and
ν r = σ r 1 r j = 1 r 1 j ν j σ r j , r = 1 , 2 , 3 , . . .
with
σ 0 = 1 , σ 2 s = 10 3 ( 20 ) s , σ 2 s 1 = 0 , s = 1 , 2 , 3 , . . .
and the empty sum is understood as usual to be nil.
Proof. 
From Stirling series (2) with the identity B 2 r + 1 = 0 , r = 1 , 2 , 3 , . . . , we have the following.
ln Γ ( w + 1 ) 2 π w w e w r = 1 B r + 1 r ( r + 1 ) w r , w .
Moreover, we obtain
w 2 + 7 60 w 2 1 20 = 1 + n = 1 10 3 ( 20 ) n ( w 2 ) n = s = 0 σ s w s , | w | > 1 20
with
σ 0 = 1 , σ 2 s = 10 3 ( 20 ) s , σ 2 s 1 = 0 , s = 1 , 2 , 3 , . . . .
By Lemma 1, we obtain
ln w 2 + 7 60 w 2 1 20 r = 1 ν r w r , w
with
ν r = σ r j = 1 r 1 j ν j σ r j r , r = 1 , 2 , 3 , . . . .
Hence,
r = 1 B r + 1 r ( r + 1 ) w r r = 1 ν r 2 w r 1 r = 1 μ r w r , w
which gives us with the aid of v 1 = 0 such that
r = 1 B r + 1 r ( r + 1 ) ν r + 1 2 w r r = 1 μ r w r , w .
Equating coefficients of w r yields
μ r = B r + 1 r ( r + 1 ) ν r + 1 2 , r = 1 , 2 , 3 , . . . .
Remark 1. 
According to Theorem 1, we have the following explicit formula.
Γ ( w + 1 ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 exp 461 907200 w 5 5197 9072000 w 7 + 1436249 1710720000 w 9 26863154077 14010796800000 w 11 + 326590926551 50948352000000 w 13 8437736988187 285534720000000 w 15 + . . . , w .
Using Lemma 2 and Theorem 1, we obtain the following result.
Theorem 2. 
The Gamma function has the asymptotic expansion
Γ ( w + 1 ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 r = 0 λ r w r , w
where λ r are given by
λ 0 = 1 , λ r = 1 r j = 1 r j λ r j μ j , r = 1 , 2 , 3 , . . .
with coefficients μ r being given by (23).
Remark 2. 
According to Theorem 2, we have
Γ ( w + 1 ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 1 + O ( w 5 ) , w
which is simpler than Windschitl’s approximation (9) and has the same rate of convergence.

4. Numerical Comparisons among Some Approximation Formulas of n !

We have the following approximation formulas:
n ! 2 π n n / e n n sinh 1 n + 1 810 n 7 n / 2 a n ,  [15]
n ! 2 π n n / e n 1 + 1 12 1 10 n 2 2369 252 n b n ,  [22]
n ! 2 π ( n + 1 ) n + 1 / 2 e n 1 exp 1 12 n 1 12 n 2 + 29 360 n 3 3 40 n c n ,  [28]
n ! 2 π ( n + 1 ) n e n 1 / 2 exp n 3 + 5 / 4 n 2 + 17 / 32 n + 172 1920 1 / 6 d n ,  [29]
n ! 2 π n n / e n n 2 9 / 120 n 2 1 / 120 n f n ,  [21]
and
n ! 2 π n n / e n n sinh 1 n n / 2 exp n 2 + 1 270 n 3 g n ,  [16].
Chen [16] showed by some numerical computations that approximation g n is stronger than the others. Moreover, Chen [30] showed by some numerical computations that the two approximations
n ! 2 π n n / e n n sinh n 1 n / 2 exp 1 1620 11 18900 n 7 h n
and
n ! 2 π n n / e n n sinh n 1 n / 2 1 + 1 1620 11 18900 n 7 k n
are stronger than formula g n for n 2 . Table 1 shows that the approximation
n ! 2 π n ( n / e ) n n 2 + 7 60 n 2 1 20 n / 2 exp 461 907200 n 5 5197 9072000 n 7 l n
is stronger than approximation h n .
Moreover, Table 2 shows that approximation
n ! 2 π n ( n / e ) n n 2 + 7 60 n 2 1 20 n / 2 1 + 461 907200 n 5 5197 9072000 n 7 p n
is stronger than approximation k n :

5. Some Bounds of Γ ( w + 1 ) Using Padé Approximants

Consider the following formal power series.
K ( w ) = α 0 + α 1 w + α 2 w 2 + . . . ,
Then, the rational function
[ m , s ] K ( w ) = i = 0 m γ i w i 1 + i = 1 s β i w i , m 0 ; s 1
is called the Padé approximant of order ( m , s ) of function K ( w ) [31,32,33], where
[ m , s ] K ( w ) K ( w ) = O ( w m + s + 1 ) , w
and coefficients β i are the solutions of the system
0 0 0 = α m + 1 α m . . . α m s + 1 α m + 2 α m + 1 . . . α m s + 2 α m + s α m + s 1 . . . α m 1 β 1 β s
with α j = 0 for j < 0 , and coefficients γ i are given by the following.
γ 0 = α 0 γ 1 = α 1 + α 0 β 1 γ m = α m + α m 1 β 1 + + α m s β s .
For the formal power series f ( w ) r = 1 μ r w r , where μ r are given by (23), we can conclude the following Padé approximations
[ 5 , 5 ] f ( w ) = 461 907200 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 + O ( w 11 )
and
[ 5 , 6 ] f ( w ) = 461 907200 89617471668379 60523294534560 w 6 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 + O ( w 12 ) .
Hence, we obtain the following double inequality.
Theorem 3. 
The following double inequality holds for w 1 .
exp 461 907200 89617471668379 60523294534560 w 6 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5
< Γ ( w + 1 ) 2 π w ( w / e ) w w 2 + 7 60 w 2 1 20 w / 2 <
exp 461 907200 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 .
Proof. 
Consider the function
M ( w ) = exp 461 907200 89617471668379 60523294534560 w 6 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 Γ ( w + 1 ) 2 π w w e w w 2 + 7 60 w 2 1 20 w / 2 , w 1
and then
M ( w ) = e w 12709891852257600 w 6 + 14328266367935520 w 4 4846102975366380 w 2 + 18813210430271527 210 60523294534560 w 6 + 68229839847312 w 4 23076680835078 w 2 + 89617471668379 Γ ( w + 1 ) 2 π w w + 1 2 w 2 + 7 60 w 2 1 20 w 2 M 1 ( w ) ,
where
M 1 ( w ) = 1 20 w 2 1 + 7 60 w 2 + 7 1 2 w 1 2 log 10 60 w 2 3 + 1 log ( w ) + ψ ( w + 1 ) 6458620088063 71916 316247844 w 2 213922547 w 2 + 89617471668379 35 107874 121704 w 2 4610 w 2 + 5197 213922547 w 2 + 89617471668379 2 + 6458620088063 42 107874 121704 w 2 4610 w 2 + 5197 213922547 w 2 + 89617471668379 .
Using M 2 ( w ) = M 1 ( w + 1 ) M 1 ( w ) , we obtain
M 2 ( w + 1 ) = M 3 ( w ) M 4 ( w ) < 0 , w 0
where
M 3 ( w ) = 6.0× 10 97 w 40 3.6× 10 99 w 39 1.1× 10 101 w 38 2.0× 10 102 w 37 2.8× 10 103 w 36 3.0× 10 104 w 35 2.6× 10 105 w 34 1.9× 10 106 w 33 1.2× 10 107 w 32 6.3× 10 107 w 31 2.9× 10 108 w 30 1.2× 10 109 w 29 4.3× 10 109 w 28 1.4× 10 110 w 27 4.0× 10 110 w 26 1.0× 10 111 w 25 2.4× 10 111 w 24 5.1× 10 111 w 23 9.8× 10 111 w 22 1.7× 10 112 w 21 2.7× 10 112 w 20 3.8× 10 112 w 19 4.9× 10 112 w 18 5.7× 10 112 w 17 6.0× 10 112 w 16 5.7× 10 112 w 15 4.9× 10 112 w 14 3.8× 10 112 w 13 2.6× 10 112 w 12 1.6× 10 112 w 11 8.9× 10 111 w 10 4.3× 10 111 w 9 1.8× 10 111 w 8 6.6× 10 110 w 7 2.0× 10 110 w 6 5.3× 10 109 w 5 1.1× 10 109 w 4 1.8× 10 108 w 3 2.2× 10 107 w 2 1.7× 10 106 w 6.7× 10 104
and
M 4 ( w ) = 70 ( w + 2 ) 2 20 w 2 + 40 w + 19 2 20 w 2 + 80 w + 79 2 60 w 2 + 120 w + 67 2 60 w 2 + 240 w + 247 2 ( w + 1 ) 2 ( 60523294534560 w 6 + 363139767207360 w 5 + 976079257865712 w 4 + 1483385250080448 w 3 + 1294151776267194 w 2 + 589905764926452 w + 195293925215173 ) 3 ( 60523294534560 w 6 + 726279534414720 w 5 + 3699627511920912 w 4 + 10229565844308096 w 3 + 16140030163794810 w 2 + 13711520702409192 w + 4962479036096899 ) 3 .
Now, M 2 ( w ) is a decreasing function for w 1 with lim w M 2 ( w ) = 0 ; then, M 2 ( w ) > 0 or M 1 ( w ) < M 1 ( w + 1 ) for w 1 . However, lim w M 1 ( w ) = 0 ; hence, by using Lemma 4, we have M 1 ( w ) < 0 for w 1 . Then, M ( w ) is a decreasing function for w 1 with lim w M ( w ) = 1 and then M ( w ) > 1 for w 1 or
Γ ( w + 1 ) 2 π w w e w w 2 + 7 60 w 2 1 20 w / 2 > exp 461 907200 89617471668379 60523294534560 w 6 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 , w 1 .
Now, consider the following function
H ( w ) = e w 461 907200 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 w w 1 2 w 2 + 7 60 w 2 1 20 w 2 Γ ( w + 1 ) 2 π ,
and then
H ( w ) = e w 461 907200 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 w w 1 2 w 2 + 7 60 w 2 1 20 w 2 Γ ( w + 1 ) 2 π H 1 ( w ) ,
where
H 1 ( w ) = 200 w 2 1200 w 4 + 80 w 2 7 1 2 w 1 2 log w 2 + 7 60 w 2 1 20 log ( w ) + ψ ( w + 1 ) 1077693991 316247844 w 2 213922547 945 w 2 561055440 w 4 + 632495688 w 2 213922547 2 + 1077693991 756 w 2 561055440 w 4 + 632495688 w 2 213922547 .
Using H 2 ( w ) = H 1 ( w + 1 ) H 1 ( w ) , we obtain
H 2 ( w + 1 ) = H 3 ( w ) H 4 ( w ) < 0 , w 0
where
H 3 ( w ) = 1.6× 10 68 w 32 + 7.6× 10 69 w 31 + 1.8× 10 71 w 30 + 2.6× 10 72 w 29 + 2.9× 10 73 w 28 + 2.4× 10 74 w 27 + 1.6× 10 75 w 26 + 9.1× 10 75 w 25 + 4.2× 10 76 w 24 + 1.7× 10 77 w 23 + 5.8× 10 77 w 22 + 1.8× 10 78 w 21 + 4.6× 10 78 w 20 + 1.1× 10 79 w 19 + 2.1× 10 79 w 18 + 3.8× 10 79 w 17 + 6.1× 10 79 w 16 + 8.6× 10 79 w 15 + 1.1× 10 80 w 14 + 1.2× 10 80 w 13 + 1.1× 10 80 w 12 + 9.6× 10 79 w 11 + 7.1× 10 79 w 10 + 4.6× 10 79 w 9 + 2.5× 10 79 w 8 + 1.2× 10 79 w 7 + 4.7× 10 78 w 6 + 1.5× 10 78 w 5 + 3.9× 10 77 w 4 + 7.8× 10 76 w 3 + 1.1× 10 76 w 2 + 1.0× 10 75 w + 4.6× 10 73
and
H 4 ( w ) = 561055440 w 4 + 2244221760 w 3 + 3998828328 w 2 + 3509213136 w + 979628581 3 561055440 w 4 + 4488443520 w 3 + 14097826248 w 2 + 20483756832 w + 11292947245 3 1890 ( w + 1 ) 3 ( w + 2 ) 3 20 w 2 + 40 w + 19 2 20 w 2 + 80 w + 79 2 60 w 2 + 120 w + 67 2 60 w 2 + 240 w + 247 2 .
Now, H 2 ( w ) is an increasing function for w 1 with lim w H 2 ( w ) = 0 ; then, H 2 ( w ) < 0 or H 1 ( w + 1 ) < H 1 ( w ) for w 1 . However, lim w H 1 ( w ) = 0 ; hence, using Lemma 4, we have H 1 ( w ) > 0 for w 1 . Then, H ( w ) is an increasing function for w 1 with lim w H ( w ) = 1 and then H ( w ) < 1 for w 1 or
Γ ( w + 1 ) 2 π w w e w w 2 + 7 60 w 2 1 20 w / 2 < e 461 907200 213922547 561055440 w 4 + 5197 4610 w 2 + 1 w 5 , w 1 .
Remark 3. 
The bounds in our new inequality (35) are better than the bounds in Alzer’s inequality (10) for w 1 .

6. Conclusions

The Padé approximant method and asymptotic expansions can be employed to present some new bounds of Γ ( w ) . We presented proofs to illustrate the novelty of our findings, which may be of interest to a significant portion of the readers. This method is a powerful tool for inferring inequalities for many other special functions.

Author Contributions

Writing to original draft, M.M. and H.A. All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this Project under grant no (G: 716-130-1443).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Correction Statement

This article has been republished with a minor correction to the existing affiliation information. This change does not affect the scientific content of the article.

References

  1. Batir, N. Very accurate approximations for the factorial function. J. Math. Inequal. 2010, 4, 335–344. [Google Scholar] [CrossRef]
  2. Gosper, R.W. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 1978, 75, 40–42. [Google Scholar] [CrossRef] [PubMed]
  3. Mortici, C. On Gospers formula for the Gamma function. J. Math. Inequal. 2011, 5, 611–614. [Google Scholar] [CrossRef]
  4. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematical Series; Nation Bureau of Standards: Dover, DE, USA; New York, NY, USA, 1972; Volume 55. [Google Scholar]
  5. Burnside, W. A rapidly convergent series for logN! Messenger Math. 1917, 46, 157–159. [Google Scholar]
  6. Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
  7. Berndt, B.C.; Choi, Y.-S.; Kang, S.-Y. The problems submitted by Ramanujan. J. Indian Math. Soc. Contemp. Math. 1999, 236, 15–56. [Google Scholar]
  8. Karatsuba, E.A. On the asymptotic representation of the Euler Gamma function by Ramanujan. J. Comput. Appl. Math. 2001, 135, 225–240. [Google Scholar] [CrossRef]
  9. Mortici, C. On Ramanujan’s large argument formula for the Gamma function. Ramanujan J. 2011, 26, 185–192. [Google Scholar] [CrossRef]
  10. Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Narosa Publishing House: New Delhi, India; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
  11. Mortici, C. Improved asymptotic formulas for the Gamma function. Comput. Math. Appl. 2011, 61, 3364–3369. [Google Scholar] [CrossRef]
  12. Available online: http://www.rskey.org/gamma.htm (accessed on 20 April 2020).
  13. Smith, W.D. The Gamma Function Revisited. 2006. Available online: http://schule.bayernport.com/gamma/gamma05.pdf (accessed on 20 April 2020).
  14. Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. R. Soc. Edinb. 2009, 139A, 709–718. [Google Scholar] [CrossRef]
  15. Lu, D.; Song, L.; Ma, C. A generated approximation of the Gamma function related to Windschitl’s formula. J. Number Theory 2014, 140, 215–225. [Google Scholar] [CrossRef]
  16. Chen, C.-P. Asymptotic expansions of the Gamma function related to Windschitl’s formula. Appl. Math. Comput. 2014, 245, 174–180. [Google Scholar] [CrossRef]
  17. Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef] [PubMed]
  18. Yang, Z.-H.; Tian, J.-F. Two asymptotic expansions for Gamma function developed by Windschitl’s formula. Open Math. 2018, 16, 1048–1060. [Google Scholar] [CrossRef]
  19. Yang, Z.-H.; Tian, J.-F. A family of Windschitl type approximations for Gamma function. J. Math. Inequal. 2018, 12, 889–899. [Google Scholar] [CrossRef]
  20. Yang, Z.-H.; Tian, J.-F. Windschitl type approximation formulas for the Gamma function. J. Inequal. Appl. 2018, 2018, 272. [Google Scholar] [CrossRef] [PubMed]
  21. Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
  22. Mortici, C. A continued fraction approximation of the Gamma function. J. Math. Anal. Appl. 2013, 402, 405–410. [Google Scholar] [CrossRef]
  23. Ahmad, S.; Ullah, A.; Akgül, A.; Jarad, F. A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations. AIMS Math. 2022, 7, 9389–9404. [Google Scholar] [CrossRef]
  24. Gulalai Ahmad, S.; Rihan, F.A.; Ullah, A.; Al-Mdallal, Q.M.; Akgül, A. Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Math. 2022, 7, 7847–7865. [Google Scholar] [CrossRef]
  25. Chen, C.-P.; Elezović, N.; Vukšić, L. Asymptotic formulae associated with the Wallis power function and digamma function. J. Class. Anal. 2013, 2, 151–166. [Google Scholar] [CrossRef]
  26. Mortici, C. New approximations of the Gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23, 97–100. [Google Scholar] [CrossRef]
  27. Elbert, A.; Laforgia, A. On some properties of the Gamma function. Proc. Amer. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
  28. Mortici, C. New improvements of the Stirling formula. Appl. Math. Comput. 2010, 217, 699–704. [Google Scholar] [CrossRef]
  29. Mortici, C. Ramanujan formula for the generalized Stirling approximation. Ramanujan J. 2010, 217, 2579–2585. [Google Scholar] [CrossRef]
  30. Chen, C.-P. Asymptotic Expansions of the Gamma Function Associated with the Windschitl and Smith Formulas. 2014. Available online: https://rgmia.org/papers/v17/v17a109.pdf (accessed on 18 April 2020).
  31. Baker, G.A., Jr.; Graves-Morris, P.R. Padé Approximants, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
  32. Brezinski, C. Computational Aspects of Linear Control; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
  33. Brezinski, C.; Redivo-Zaglia, M. New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 2015, 284, 69–77. [Google Scholar] [CrossRef]
Table 1. Comparison among h n and l n .
Table 1. Comparison among h n and l n .
n n ! h n n ! n ! l n n !
10.0003064660.000305449
10 8.22120× 10 13 8.20998× 10 13
50 4.30037× 10 19 4.29462× 10 19
100 8.40490× 10 22 8.39367× 10 22
1000 8.40680× 10 31 8.39556× 10 31
Table 2. Comparison among k n and p n .
Table 2. Comparison among k n and p n .
n n ! k n n ! n ! p n n !
10.0003064660.000305451
10 8.22139× 10 13 8.21011× 10 13
50 4.30039× 10 19 4.29463× 10 19
100 8.40492× 10 22 8.39368× 10 22
1000 8.40680× 10 31 8.39556× 10 31
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mahmoud, M.; Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. https://doi.org/10.3390/sym14112459

AMA Style

Mahmoud M, Almuashi H. On Some Asymptotic Expansions for the Gamma Function. Symmetry. 2022; 14(11):2459. https://doi.org/10.3390/sym14112459

Chicago/Turabian Style

Mahmoud, Mansour, and Hanan Almuashi. 2022. "On Some Asymptotic Expansions for the Gamma Function" Symmetry 14, no. 11: 2459. https://doi.org/10.3390/sym14112459

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop