Ulam Stability of a General Linear Functional Equation in Modular Spaces
Abstract
:1. Introduction
- (i)
- for;
- (ii)
- ;
- (iii)
- forand.
2. Preliminaries
- M1.
- if and only if;
- M2.
- for everywith;
- M3.
- for everywith.If we replace condition M3 with the following one:
- M4.
- for everywith,
- (a)
- If is a modular on Y and , then the function is non-decreasing, i.e., for every with (it is enough to take in M3).
- (b)
- For a convex modular on Y, we have for all and with and, moreover,
- (i)
- is ρ-convergent to a point(which we denote by), ifas;
- (ii)
- is ρ-Cauchy if for any, we havefor sufficiently large;
- (iii)
- is said to be ρ-complete if every ρ-Cauchy sequence inis ρ-convergent.
- (iv)
- A subsetis called ρ-closed if C contains everysuch that there is a sequencein C which is ρ-convergent to x.
3. Stability of Equation (5)
- (1)
- Every constant function satisfies condition (7).
- (2)
- If satisfy (7), then so does the function for any fixed scalars , .
- (3)
- Consider the situation in Corollary 1 (i.e., when Equation (5) has the form (20)). Then, condition (7) has the form
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Khodaei, H. On the hyperstability of (m,n)-derivations. Fixed Point Theory 2017, 18, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-M.; Shin, W.-Y. Approximate Lie*-derivations on ρ-complete convex modular algebras. J. Appl. Anal. Comput. 2019, 9, 765–776. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Shah, S.O.; Tunç, C.; Rizwan, R.; Zada, A.; Khan, Q.U.; Ullah, I.; Ullah, I. Bielecki–Ulam’s Types Stability Analysis of Hammerstein and Mixed Integro–Dynamic Systems of Non–Linear Form with Instantaneous Impulses on Time Scales. Qual. Theory Dyn. Syst. 2022, 21, 107. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 12. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. On stability of the general linear equation. Aequat. Math. 2015, 89, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aequat. Math. 2016, 90, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungarica 2013, 141, 58–67. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Forti, G.L. Elementary remarks on Ulam-Hyers stability of linear functional equations. J. Math. Anal. Appl. 2007, 328, 109–118. [Google Scholar] [CrossRef]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality, 2nd ed.; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Jung, S.-M.; Rassias, M.T. A linear functional equation of third order associated to the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 137468. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.W. On the stability on a quadratic Jensen type functional equation. J. Math. Anal. Appl. 2002, 270, 590–601. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.W. Stability of a generalized quadratic functional equation with Jensen type. Bull. Korean Math. Soc. 2005, 42, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Mortici, C.; Rassias, M.T.; Jung, S.-M. On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 546046. [Google Scholar] [CrossRef] [Green Version]
- Pales, Z. Generalized stability of the Cauchy functional equation. Aequat. Math. 1998, 56, 222–232. [Google Scholar] [CrossRef]
- Park, C. Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A fixed-point approach. Fixed Point Theory Appl. 2008, 2008, 493751. [Google Scholar] [CrossRef]
- Patel, B.M.; Patel, A.B. Stability of Quartic functional equations in 2-Banach space. Int. J. Math. Anal. 2013, 7, 1097–1107. [Google Scholar] [CrossRef]
- Pinelas, S.; Govindan, V.; Tamilvanan, K. Stability of Cubic Functional Equation in Random Normed Space. J. Adv. Math. 2018, 14. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Stability of the Drygas functional equation on restricted domain. Results Math. 2015, 68, 11–24. [Google Scholar] [CrossRef]
- Smajdor, W. Note on a Jensen type functional equation. Publ. Math. Debrecen 2003, 63, 703–714. [Google Scholar]
- Trif, T. Hyers-Ulam-Rassias stability of a Jensen type functional equation. J. Math. Anal. Appl. 2000, 250, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Benzarouala, C.; Oubbi, L. A purely fixed-point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. In Ulam Type Stability; Brzdęk, J., Popa, D., Rassias, T.M., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 47–56. [Google Scholar]
- Phochai, T.; Saejung, S. The hyperstability of general linear equation via that of Cauchy equation. Aequat. Math. 2019, 93, 781–789. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. Hyperstability of generalized linear functional equations in several variables. Bull. Austral. Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Zhang, D. On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. Aequat. Math. 2016, 90, 559–568. [Google Scholar] [CrossRef]
- Brzdęk, J.; Leśniak, Z.; Malejki, R. On the generalized Fréchet functional equation with constant coefficients and its stability. Aeq. Math. 2018, 92, 355–373. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; Leśniak, Z.; Malejki, R. On the stability of a generalized Fréchet functional equation with respect to hyperplanes in the parameter space. Symmetry 2021, 13, 384. [Google Scholar] [CrossRef]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed-point approach. Aequat. Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; Jabłońska, E.; Malejki, R. Ulam’s stability of a generalization of the Fréchet functional equation. J. Math. Anal. Appl. 2016, 442, 537–553. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; El-hady, E.-S.; Leśniak, Z. On Ulam stability of functional equations in 2-normed spaces—A survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Brzdęk, J.; El-hady, E.-S. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar]
- Brzdęk, J.; Karapınar, E.; Petruşel, A. A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 2018, 467, 501–520. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Raşa, I. Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 2017, 453, 620–628. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Park, C.; Palani, P.; Kumar, T.R.K. Stability of an additive-quartic functional equation in modular spaces. J. Math. Comput. SCI-JM 2022, 26, 22–40. [Google Scholar] [CrossRef]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen: Tokyo, Japan, 1950. [Google Scholar]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1959, 7, 661–668. [Google Scholar]
- Ramdoss, M.; Pachaiyappan, D.; Hwang, I.; Park, C. Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Math. 2020, 5, 5903–5915. [Google Scholar] [CrossRef]
- Sadeghi, G. A fixed-point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. 2014, 37, 333–344. [Google Scholar]
- Wongkum, K.; Chaipunya, P.; Kumam, P. On the Generalized Ulam-Hyers-Rassias Stability of Quadratic Mappings in Modular Spaces without Δ-Conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Khamsi, M.A. Quasicontraction mappings in modular spaces without δ2-condition. Fixed Point Theory Appl. 2008, 2008, 916187. [Google Scholar] [CrossRef] [Green Version]
- Wongkum, K.; Kumam, P.; Cho, Y.J.; Thounthong, P.; Chaipunya, P. On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl. 2017, 10, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Hajji, A. Modular spaces topology. Appl. Math. 2013, 4, 1296–1300. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboutaib, I.; Benzarouala, C.; Brzdęk, J.; Leśniak, Z.; Oubbi, L. Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry 2022, 14, 2468. https://doi.org/10.3390/sym14112468
Aboutaib I, Benzarouala C, Brzdęk J, Leśniak Z, Oubbi L. Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry. 2022; 14(11):2468. https://doi.org/10.3390/sym14112468
Chicago/Turabian StyleAboutaib, Issam, Chaimaa Benzarouala, Janusz Brzdęk, Zbigniew Leśniak, and Lahbib Oubbi. 2022. "Ulam Stability of a General Linear Functional Equation in Modular Spaces" Symmetry 14, no. 11: 2468. https://doi.org/10.3390/sym14112468
APA StyleAboutaib, I., Benzarouala, C., Brzdęk, J., Leśniak, Z., & Oubbi, L. (2022). Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry, 14(11), 2468. https://doi.org/10.3390/sym14112468