A Secured Half-Duplex Bidirectional Quantum Key Distribution Protocol against Collective Attacks
Abstract
:1. Introduction
2. Basics and Main Methods
2.1. Quantum Key Distribution
2.2. Partial Diffusion Operator
3. Theoretical Work
3.1. The Structure of the Proposed Protocol
- Step 1.
- Alice starts with two random classical bit strings s and t, each string is of size N where where is a parameter .
- Step 2.
- Alice encodes s and t into a superposition of two states where the second qubit represents the basis used for measurement, whereas the first qubit represents the bit value. The prepared qubits are then or .
- Step 3.
- Alice performs a partial diffusion quantum operator that is used as an extra security level by substituting the prepared qubits by other qubits from the superposition.
- Step 4.
- The two-qubit state is teleported from Alice to Bob through the direction of the unauthorized QCC.
- Step 5.
- Bob performs the Grover’s quantum operator followed by the predefined unitary transformation sent by Alice through ACC and performs his measurement.
- Step 6.
- Bob prepares a two-qubit state based on his measurement and retransmits the qubit through the direction of the QCC.
- Step 7.
- Alice performs the same predefined unitary transformation sent to Bob.
3.2. Collective Attack
- Step 1.
- The quantum state that represents the qubit prepared by Alice is
- Step 2.
- Step 3.
- Bob performs his measurement, the probability of measuring the system in state is where . This is represented by the following equation
- Step 4.
- Step 5.
- Eve passes the attacked qubit states to Alice who measures the Z-basis as in step 1. The probability of measuring the system in state is and can be represented asSimilarly, the probability of measuring the system in state is and can be represented as
3.3. Parameter Estimation Stage
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Mahalawy, A.M.; El-Safty, K.H. Classical and quantum regression analysis for the optoelectronic performance of NTCDA/p-Si UV photodiode. Optik 2021, 246, 167793. [Google Scholar] [CrossRef]
- Okrut, O.; Cannon, K.; El-Safty, K.H.; Elsokkary, N.; Khan, F.S. Calculating Nash Equilibrium on Quantum Annealers. arXiv 2021, arXiv:2112.12583. [Google Scholar]
- Nagata, K.; Diep, D.N.; Nakamura, T. Quantum cryptography based on an algorithm for determining simultaneously all the mappings of a logical function. In Simplified Quantum Computing with Applications; IOP Publishing: Bristol, UK, 2022; pp. 9-1–9-11. [Google Scholar] [CrossRef]
- Granelli, F.; Bassoli, R.; Nötzel, J.; Fitzek, F.H.; Boche, H.; da Fonseca, N.L. A Novel Architecture for Future Classical-Quantum Communication Networks. Wirel. Commun. Mob. Comput. 2022, 2022, 3770994. [Google Scholar] [CrossRef]
- Frey, M.; Bjelaković, I.; Nötzel, J.; Stańczak, S. Semantic Security with Infinite Dimensional Quantum Eavesdropping Channel. arXiv 2022, arXiv:2205.07663. [Google Scholar]
- Tabi, Z.; El-Safty, K.H.; Kallus, Z.; Hága, P.; Kozsik, T.; Glos, A.; Zimborás, Z. Quantum optimization for the graph coloring problem with space-efficient embedding. In Proceedings of the 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), Denver, CO, USA, 12–16 October 2020; pp. 56–62. [Google Scholar]
- Zhang, W.; van Leent, T.; Redeker, K.; Garthoff, R.; Schwonnek, R.; Fertig, F.; Eppelt, S.; Scarani, V.; Lim, C.C.W.; Weinfurter, H. Experimental device-independent quantum key distribution between distant users. arXiv 2021, arXiv:2110.00575. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.L.; Dong, C.; He, Y.; Jing, F.; He, W.T.; Ren, B.C.; Li, C.Y.; Deng, F.G. Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons. Opt. Express 2020, 28, 4611–4624. [Google Scholar] [CrossRef]
- Seminar, P. Einstein, 1905–2005; Birkhäuser: Basel, Switzerland, 2005; Volume 47, ISBN 978-3-7643-7435-8. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Grangier, P. Experiments with Single Photons. Prog. Math. Phys. 2006, 47, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Li, N.; Wang, S.; Liu, Z.; Ren, M.; Ma, H. Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model. Sensors 2019, 19, 5257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qiu, D.; Mateus, P. Single-state semi-quantum key distribution protocol and its security proof. Int. J. Quantum Inf. 2020, 18, 2050013. [Google Scholar] [CrossRef]
- Lin, P.H.; Tsai, C.W.; Hwang, T. Mediated Semi-Quantum Key Distribution Using Single Photons. Annalen der Physik 2019, 531, 1800347. [Google Scholar] [CrossRef]
- Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2021, 13, 4740. [Google Scholar] [CrossRef]
- Pan, X. Semi-Quantum Key Distribution Protocol with Logical Qubits over the Collective-Rotation Noise Channel. Int. J. Theor. Phys. 2022, 61, 77. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Y.Z.; Zhang, Q.; Pan, J.W. Device-Independent Quantum Key Distribution with Random Postselection. Phys. Rev. Lett. 2022, 128, 110506. [Google Scholar] [CrossRef]
- Lizama-Pérez, L.A.; López-Romero, J.M. Perfect Reconciliation in Quantum Key Distribution with Order-Two Frames. Symmetry 2021, 13, 1672. [Google Scholar] [CrossRef]
- Younes, A. Enhancing the security of quantum communication by hiding the message in a superposition. Inf. Sci. 2011, 181, 329–334. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, X.; Yu, S.; Guo, H. Improving Parameter Estimation of Entropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution. Entropy 2019, 21, 652. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Isidoro, C.; Delgado, F. Shared Quantum Key Distribution Based on Asymmetric Double Quantum Teleportation. Symmetry 2022, 14, 713. [Google Scholar] [CrossRef]
- Younes, A.; Rowe, J.; Miller, J. Enhanced quantum searching via entanglement and partial diffusion. Phys. D Nonlinear Phenom. 2008, 237, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, Philadelphia, PA, USA, 22–24 May 1996; Association for Computing Machinery: New York, NY, USA, 1996; pp. 212–219. [Google Scholar] [CrossRef]
- Khawasik, M.; Elsayed, W.; Rashad, M.; Younes, A. A Secured Quantum Two-Bit Commitment Protocol for Communication Systems. IEEE Access 2022, 10, 50218–50226. [Google Scholar] [CrossRef]
- Li, W.; Zhao, S. Upper Bound of Collective Attacks on Quantum Key Distribution. arXiv 2019, arXiv:1909.12584. [Google Scholar]
- Krawec, W. High-Dimensional Semiquantum Cryptography. IEEE Trans. Quantum Eng. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Devetak, I.; Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 207–235. [Google Scholar] [CrossRef] [Green Version]
- Boes, P.; Eisert, J.; Gallego, R.; Müller, M.P.; Wilming, H. Von Neumann Entropy from Unitarity. Phys. Rev. Lett. 2019, 122, 210402. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Hernández, F.J.; Carballo-Franquis, J.; Chen, A.; Chen, C.-F.; et al. Qiskit: An Open-Source Framework for Quantum Computing; Zenodo: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Yang, C.W.; Hwang, T. Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 2013, 12, 2131–2142. [Google Scholar] [CrossRef]
Bit | Basis | Encoded 2-Qubit State | Unitary Transformation |
---|---|---|---|
0 | Z | ||
1 | Z | ||
0 | X | ||
1 | X |
Lin et al. Protocol | Pan et al. Protocol | Proposed Protocol | |
---|---|---|---|
Initial quantum resource | Reflection single photons | Two-physical qubit entangled state | Superposition of two states entangled with a GHZ state |
Number of initial quantum states | Two | Three | Two |
Qubit efficiency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khawasik, M.; El-Sayed, W.G.; Rashad, M.Z.; Younes, A. A Secured Half-Duplex Bidirectional Quantum Key Distribution Protocol against Collective Attacks. Symmetry 2022, 14, 2481. https://doi.org/10.3390/sym14122481
Khawasik M, El-Sayed WG, Rashad MZ, Younes A. A Secured Half-Duplex Bidirectional Quantum Key Distribution Protocol against Collective Attacks. Symmetry. 2022; 14(12):2481. https://doi.org/10.3390/sym14122481
Chicago/Turabian StyleKhawasik, Manal, Wagdy Gomaa El-Sayed, M. Z. Rashad, and Ahmed Younes. 2022. "A Secured Half-Duplex Bidirectional Quantum Key Distribution Protocol against Collective Attacks" Symmetry 14, no. 12: 2481. https://doi.org/10.3390/sym14122481
APA StyleKhawasik, M., El-Sayed, W. G., Rashad, M. Z., & Younes, A. (2022). A Secured Half-Duplex Bidirectional Quantum Key Distribution Protocol against Collective Attacks. Symmetry, 14(12), 2481. https://doi.org/10.3390/sym14122481