Experimental Study on the Influence of Gravitational Tilt Angle on the Spatio-Temporal Evolution of Solutocapillary Convection
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results
4.1. The Flow Characteristics of Solutocapillary Convection under the 0° Gravitational Tilt Angle
4.2. The Flow Characteristics of Solutocapillary Convection under the 5° Gravitational Tilt Angle
4.3. The Flow Characteristics of Solutocapillary Convection under the 10° Gravitational Tilt Angle
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perales, J.M. Non-axisymmetric effects on long liquid bridges. Acta Astronaut. 1987, 15, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Kawaji, M.; Liang, R.Q.; Nasr-Esfahany, M.; Simic-Stefani, S.; Yodab, S. The effect of small vibrations on Marangoni convection and the free surface of a liquid bridge. Acta Astronaut. 2006, 58, 622–632. [Google Scholar] [CrossRef]
- Fan, J.G.; Liang, R.Q. Thermal-solutal capillary convection in binary mixture liquid bridge with various aspect ratios under microgravity. J. Cryst. Growth 2022, 586, 126630. [Google Scholar] [CrossRef]
- Benouaguef, I.; Musunuri, N.; Amah, E.; Blackmore, D.; Fischer, I.; Singh, P. Solutocapillary Marangoni flow induced in a waterbody by a solute source. J. Fluid Mech. 2021, 922, A23. [Google Scholar] [CrossRef]
- Lan, C.W.; Chian, J.H. Three-dimensional simulation of Marangoni flow and interfaces in floating-zone silicon crystal growth. J. Cryst. Growth 2001, 230, 172–180. [Google Scholar] [CrossRef]
- Kawaji, M.; Gamache, O.; Hwang, D.H.; Ichikawa, N.; Viola, J.P.; Syguschet, J. Investigation of Marangoni and natural convection during protein crystal growth. J. Cryst. Growth 2003, 258, 420–430. [Google Scholar] [CrossRef]
- Arafune, K.; Kodera, K.; Kinoshita, A.; Hirata, A. Control of crystal–melt interface shape during horizontal Bridgman growth of InSb crystal using solutal Marangoni convection. J. Cryst. Growth 2003, 249, 429–436. [Google Scholar] [CrossRef]
- Yu, J.J.; Tang, C.Y.; Li, Y.R.; Tongran, Q. Numerical simulation study on the pure solutocapillary flow of a binary mixture with various solutal coefficients of surface tension in an annular pool. Int. Commun. Heat Mass 2019, 108, 104342. [Google Scholar] [CrossRef]
- Witkowski, L.M.; Walker, J.S. Solutocapillary instabilities in liquid bridges. Phys. Fluids 2002, 14, 2647–2656. [Google Scholar] [CrossRef]
- Kostarev, K.G.; Zuev, A.L.; Viviani, A. Experimental considerations of solutocapillary flow initiation on bubble/drop interface in the presence of a soluble surfactant. Microgravity Sci. Technol. 2009, 21, 59–65. [Google Scholar] [CrossRef]
- Subramanian, P.; Zebib, A.; Mcquillan, B. Solutocapillary convection in spherical shells. Phys. Fluids 2005, 17, 194–223. [Google Scholar] [CrossRef]
- Viviani, A.; Denisova, M.; Kostarev, K.; Zuev, A. The threshold origin of solutocapillary Marangoni convection on a bounded free surface. Acta Astronaut. 2014, 102, 200–206. [Google Scholar] [CrossRef]
- Trofimenko, A.I.; Mizev, A.I. Instability of solutocapillary flow in the presence of insoluble surfactant. In Proceedings of the XL International Summer School–Conference APM, St. Petersburg, Russia, 20–24 June 2012. [Google Scholar]
- Mizev, A.; Birikh, R. Interaction between buoyant and solutocapillary convections induced by a surface-active source placed under the free surface. Eur. Phys. J. Spec. Topics 2011, 192, 145–153. [Google Scholar] [CrossRef]
- Zuev, A.L.; Kostarev, K.G. Certain peculiarities of the solutocapillary convection. Physics-Uspekhi 2008, 51, 1027–1045. [Google Scholar] [CrossRef]
- Kostarev, K.; Zuev, A.; Viviani, A. Oscillatory Marangoni convection around the air bubble in a vertical surfactant stratification. Comptes Rendus Mec. 2004, 332, 1–7. [Google Scholar] [CrossRef]
- Sternling, C.V.; Scriven, L.E. Interfacial turbulence: Hydrodynamic instability and the Marangoni effect. AIChE J. 1959, 5, 514–523. [Google Scholar] [CrossRef]
- Schwarzenberger, K.; Köllner, T.; Linde, H.; Boeck, T.; Odenbach, S.; Eckert, K. Pattern formation and mass transfer under stationary solutal Marangoni instability. Adv. Colloid Interface Sci. 2014, 206, 344–371. [Google Scholar] [CrossRef]
- Schwarzenberger, K.; Aland, S.; Domnick, H.; Odenbach, S.; Eckert, K. Relaxation oscillations of solutal Marangoni convection at curved interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 633–643. [Google Scholar] [CrossRef]
- Wang, F.; Selzer, M.; Nestler, B. On the motion of droplets driven by solutal Marangoni convection in alloy systems with a miscibility gap. Phys. D 2015, 307, 82–96. [Google Scholar] [CrossRef]
- Köllner, T.; Schwarzenberger, K.; Eckert, K.; Boeck, T. Multiscale structures in solutal Marangoni convection: Three-dimensional simulations and supporting experiments. Phys. Fluids 2013, 25, 092109. [Google Scholar] [CrossRef]
- Savino, R.; Piccolo, C.; Lappa, M.; Carotenuto, L. Natural and Marangoni convection in partially miscible liquid systems. Acta Astronaut. 2005, 57, 89–96. [Google Scholar] [CrossRef]
- Shevtsova, V.; Ermakov, M.K.; Ryabitskii, E.; Legros, J.C. Oscillations of a liquid bridge free surface due to the thermal convection. Acta Astronaut. 1997, 41, 471–479. [Google Scholar] [CrossRef]
- Shevtsova, V. Thermal convection in liquid bridges with curved free surfaces: Benchmark of numerical solutions. J. Cryst. Growth. 2005, 280, 632–651. [Google Scholar] [CrossRef]
- Ferrera, C.; Mialdun, A.; Shevtsova, V.; Cabezas, M.G.; Montanaro, J.M. Measurement of the dynamical free surface deformation in liquid bridges. Acta Astronaut. 2008, 62, 471–477. [Google Scholar] [CrossRef]
- Montanero, J.M.; Ferrera, C.; Shevtsova, V. Experimental study of the free surface deformation due to thermal convection in liquid bridges. Exp. Fluids 2008, 45, 1087–1101. [Google Scholar] [CrossRef]
- Ferrera, C.; Montanero, J.M.; Mialdun, A.; Shevtsova, V.; Cabezas, M.G. A new experimental technique for measuring the dynamical free surface deformation in liquid bridges due to thermal convection. Meas. Sci. Technol. 2008, 19, 015410. [Google Scholar] [CrossRef]
- Liang, R.; Zhou, J.L.; Yang, S.; Zhang, Y.Y.; Shi, J.H.; Xiao, S. Experimental study on transition characteristics of thermo-solutocapillary convection under buoyancy. Exp. Therm. Fluid Sci. 2019, 106, 38–47. [Google Scholar] [CrossRef]
- Smirnov, N.N.; Nikitin, V.F.; Stamov, L.I.; Tyurenkova, V.V.; Smirnova, M.N. Modelling of thin wall perforation limit in debris particles impact on space structures. Acta Astronaut. 2022, in press. [Google Scholar] [CrossRef]
Density, ρ (kg/m3) | Dynamic Viscosity, μ (Pa·s) | Refractive Index, β (-) | Specific Heat, Cp (J·kg−1·K−1) | Thermal Conductivity, κ (W/m·K) | Surface Tension, σ (mN/m) | Thermal Expansion Rate, γ (1/°C) |
---|---|---|---|---|---|---|
935 | 9.35 × 10−3 | 1.399 | 1672 | 0.14 | 20.1 | 1.06 × 10−3 |
Particle Type | D, (μm) | ρ, (g/cm3) | β, (-) | , (m/s) | St, (-) |
---|---|---|---|---|---|
PF | 8.5 | 3.43 | 2.0 | 1.6 × 10−3 | 1.12 × 10−8 |
No. | The Actual Volume of a Liquid Bridge, V (μL) | Temperature Difference, ΔT (°C) | Velocity in the Hot Corner, V (m/s) |
---|---|---|---|
1 | 23 | 38.5 | 20.0 × 10−3 |
2 | 24 | 39.1 | 15.0 × 10−3 |
3 | 24 | 40.1 | 15.0 × 10−3 |
4 | 23 | 38.4 | 17.5 × 10−3 |
5 | 23 | 39.6 | 20.0 × 10−3 |
Average value | 23.4 | 39.1 | 17.5 × 10−3 |
Standard deviation | 0.24 | 0.6 | 2.2 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Qin, D.; Zhang, Y.; Xu, L.; Fu, Y.; Cui, J.; Pan, H. Experimental Study on the Influence of Gravitational Tilt Angle on the Spatio-Temporal Evolution of Solutocapillary Convection. Symmetry 2022, 14, 2485. https://doi.org/10.3390/sym14122485
Yang S, Qin D, Zhang Y, Xu L, Fu Y, Cui J, Pan H. Experimental Study on the Influence of Gravitational Tilt Angle on the Spatio-Temporal Evolution of Solutocapillary Convection. Symmetry. 2022; 14(12):2485. https://doi.org/10.3390/sym14122485
Chicago/Turabian StyleYang, Shuo, Daocheng Qin, Yupeng Zhang, Lin Xu, Yudong Fu, Jie Cui, and Honggang Pan. 2022. "Experimental Study on the Influence of Gravitational Tilt Angle on the Spatio-Temporal Evolution of Solutocapillary Convection" Symmetry 14, no. 12: 2485. https://doi.org/10.3390/sym14122485
APA StyleYang, S., Qin, D., Zhang, Y., Xu, L., Fu, Y., Cui, J., & Pan, H. (2022). Experimental Study on the Influence of Gravitational Tilt Angle on the Spatio-Temporal Evolution of Solutocapillary Convection. Symmetry, 14(12), 2485. https://doi.org/10.3390/sym14122485