Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.H.; Liu, J.; Gu, J.J.; Su, L.; Cheng, L.F. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535–2558. [Google Scholar] [CrossRef]
- Lu, X.F.; Xia, B.Y.; Zang, S.Q.; Lou, X.W. Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 4634–4650. [Google Scholar] [CrossRef]
- Li, D.B.; Li, X.Y.; Chen, S.M.; Yang, H.; Wang, C.D.; Wu, C.Q.; Haleem, Y.A.; Duan, S.; Lu, J.L.; Ge, B.H.; et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518. [Google Scholar] [CrossRef]
- Yan, S.; Jiao, L.; He, C.; Jiang, H. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Acta Chim. Sin. 2022, 80, 1084–1090. [Google Scholar] [CrossRef]
- Gao, J.J.; Hu, Y.X.; Wang, Y.; Lin, X.R.; Hu, K.L.; Lin, X.; Xie, G.Q.; Liu, X.J.; Reddy, K.M.; Yuan, Q.H.; et al. MOF Structure Engineering to Synthesize Co-N-C Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small 2021, 17, 2104684. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Jia, Y.; Wei, F.F.; Zhuang, L.Z.; Yang, D.J.; Liu, J.Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X.D. Understanding the Activity of Co-N4-xCx in Atomic Metal Catalysts for Oxygen Reduction Catalysis. Angew. Chem. Int. Ed. 2020, 59, 6122–6127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, T.; Kou, Z.K.; Shen, L.; Zhao, Y.F.; Wang, Z.Y.; Wang, X.Q.; Yang, Z.K.; Du, J.Y.; Xu, J.; et al. Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angew. Chem. Int. Ed. 2020, 59, 20465–20469. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.-P.; Huang, N.-B.; Zhang, J.-J.; Dong, W.-J.; Yang, L.; Wang, B. Fabricating Co-N-C catalysts based on ZIF-67 for oxygen reduction reaction in alkaline electrolyte. J. Solid State Chem. 2021, 294, 121788. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.Q.; Chen, Z.Y.; Chen, H.; Xu, M.W.; Bao, S.J. Design and synthesis of Co-N-C porous catalyst derived from metal organic complexes for highly effective ORR. Dalton Trans. 2017, 46, 15646–15650. [Google Scholar] [CrossRef]
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Zhang, C.; Su, P.; Shen, Z.; Liu, H.; Wang, G.; Liu, S.; Liu, J. Metal-organic-framework-derived formation of Co-N-doped carbon materials for efficient oxygen reduction reaction. J. Energy Chem. 2020, 40, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Suo, Y.; Zhang, Z.; Zhang, Z.; Hu, G. Cobalt and nitrogen-doped carbon with enlarged pore size derived from ZIF-67 by a NaCl-assisted pyrolysis strategy towards oxygen reduction reaction. Ionics 2021, 27, 289–303. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, X.; Zhang, Y.; Lu, Y.; Liu, X.; Zheng, Y.; Zhang, Y.; Lin, J. Fe/Co/N-C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction. Rsc Adv. 2022, 12, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Giddaerappa; Manjunatha, N.; Shantharaja; Hojamberdiev, M.; Sannegowda, L.K. Tetraphenolphthalein Cobalt(II) Phthalocyanine Polymer Modified with Multiwalled Carbon Nanotubes as an Efficient Catalyst for the Oxygen Reduction Reaction. Acs Omega 2022, 7, 14291–14304. [Google Scholar] [CrossRef]
- Lokesh, K.S.; De Keersmaecker, M.; Adriaens, A. Self Assembled Films of Porphyrins with Amine Groups at Different Positions: Influence of Their Orientation on the Corrosion Inhibition and the Electrocatalytic Activity. Molecules 2012, 17, 7824–7842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, B.; Wang, J.; Fan, Y.; Jiang, Y.; Zhai, Y.; Wang, Y.; Huang, Q.; Dang, F.; Zhang, Z.; Wang, N. Mesoporous CoO/Co-N-C nanofibers as efficient cathode catalysts for Li-O-2 batteries. J. Mater. Chem. A 2018, 6, 19075–19084. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Zhang, T.; Lin, B.; Ni, J.; Au, C.T.; Jiang, L. Strong metal-support interactions of Co-based catalysts facilitated by dopamine for highly efficient ammonia synthesis: In situ XPS and XAFS spectroscopy coupled with TPD studies. Chem. Commun. 2019, 55, 474–477. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Chen, C.M.; Cai, M.Q.; Cai, Y.; Ju, H.X.; Hu, S.W.; Zhang, M. Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates. Mater. Res. Bull. 2019, 114, 161–169. [Google Scholar] [CrossRef]
- Li, Q.; Xu, P.; Gao, W.; Ma, S.; Zhang, G.; Cao, R.; Cho, J.; Wang, H.-L.; Wu, G. Graphene/Graphene-Tube Nanocomposites Templated from Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li-O-2 Batteries. Adv. Mater. 2014, 26, 1378–1386. [Google Scholar] [CrossRef]
- Guo, X.; Qian, C.; Shi, R.; Zhang, W.; Xu, F.; Qian, S.; Zhang, J.; Yang, H.; Yuan, A.; Fan, T. Biomorphic Co Symbol of the Klingon Empire N Symbol of the Klingon Empire C/CoOx Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small 2019, 15, 4855. [Google Scholar] [CrossRef]
- Liu, M.; Lin, H.; Mei, Z.; Yang, J.; Lin, J.; Liu, Y.; Pan, F. Tuning Cobalt and Nitrogen Co-Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction. Chemsuschem 2018, 11, 3631–3639. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Meng, F.; Song, K.; Wang, D.; Zhang, W. Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry 2022, 14, 2496. https://doi.org/10.3390/sym14122496
Liang Q, Meng F, Song K, Wang D, Zhang W. Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry. 2022; 14(12):2496. https://doi.org/10.3390/sym14122496
Chicago/Turabian StyleLiang, Qing, Fanling Meng, Kexin Song, Dong Wang, and Wei Zhang. 2022. "Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction" Symmetry 14, no. 12: 2496. https://doi.org/10.3390/sym14122496
APA StyleLiang, Q., Meng, F., Song, K., Wang, D., & Zhang, W. (2022). Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry, 14(12), 2496. https://doi.org/10.3390/sym14122496