Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases
Abstract
:1. Introduction
2. Preliminaries
3. Analytical Results
4. Numerical Results
- .
- .
Algorithm 1: Pseudocode of proposed scheme (28)–(30). |
procedureFunction
|
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hayman, D.T.S.; Johnson, N.; Horton, D.L.; Hedge, J.; Wakeley, P.R.; Banyard, A.C.; Zhang, S.; Alhassan, A.; Fooks, A.R. Evolutionary history of rabies in Ghana. PLoS Neglected Trop. Dis. 2011, 5, e1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiddy, J.K.; Asamoah, K.; Oduro, F.T.; Bonyah, E.; Seidu, B. Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis. J. Appl. Math. 2017, 2017, 2451237. [Google Scholar]
- Ega, T.T.; Luboobi, L.S.; Kuznetsov, D. Modeling the Dynamics of Rabies Transmission with Vaccination and Stability Analysis. Appl. Comput. Math. 2015, 4, 409–419. [Google Scholar]
- Demirci, E. A New Mathematical Approach for Rabies Endemy. Appl. Math. Sci. 2014, 8, 59–67. [Google Scholar] [CrossRef]
- Balcha, C.; Abdela, N. Review of Rabies Preventions and Control. Int. J. Public Health Sci. 2017, 6, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Bartoszynki, R. On the Risk of Rabies; Mathematical Institute, Polish Academy of Sciences: Warsaw, Poland, 1975; pp. 355–377. [Google Scholar]
- Zarin, R.; Ahmed, I.; Kumam, P.; Zeb, A.; Din, A. Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate. Results Phys. 2021, 28, 104665. [Google Scholar] [CrossRef]
- Wiraningsih, E.D.; Widodo; Aryati, L.; Toaha, S.; Lenhart, S. Optimal Control for SEIR Rabies Model between Dogs and Human with Vaccination Effect in dogs. In Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and Its Applications (ICMSA2010), Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia, 3–4 November 2018. [Google Scholar]
- Tsiodras, S.; Dougas, G.; Baka, A.; Billinis, C.; Doudounakis, S.; Balaska, A.; Georgakopoulou, T.; Rigakos, G.; Kontos, V.; Tasioudi, K.E.; et al. Re-emergence of animal rabies in northern Greece and subsequent human exposure. Eurosurveillance 2013, 18, 20474. [Google Scholar]
- Warrel, M.J. Current rabies vaccines and prophylaxis schedules: Preventing rabies before and after exposure. Travel Med. Infect. Dis. 2012, 10, 1–15. [Google Scholar] [CrossRef]
- Arafa, A.A.M.; Rida, S.Z.; Khalil, M. A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients. Int. J. Biomath. 2014, 7, 1450036. [Google Scholar] [CrossRef]
- Rihan, F.A.; Lakshmanan, S.; Hashish, A.H.; Rakkiyappan, R.; Ahmed, E. Fractional-order delayed predator–prey systems with Holling type-II functional response. Nonlinear Dyn. 2015, 80, 777–789. [Google Scholar] [CrossRef]
- Shi, Z.; Jiang, D.; Zhang, X.; Alsaedi, A. A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function. Appl. Math. Comput. 2022, 427, 127189. [Google Scholar] [CrossRef]
- Ewald, J.; Sieber, P.; Garde, R.; Lang, S.N.; Schuster, S.; Ibrahim, B. Trends in mathematical modeling of host–pathogen interactions. Cell. Mol. Life Sci. 2020, 77, 467–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, F.M. On some approximate methods for nonlinear models. Appl. Math. Comput. 2009, 215, 168–174. [Google Scholar] [CrossRef]
- Dayan, F.; Rafiq, M.; Ahmed, N.; Raza, A.; Ahmad, M.O. A dynamical study of a fuzzy epidemic model of Mosquito-Borne Disease. Comput. Biol. Med. 2022, 148, 105673. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Macías-Díaz, J.E.; Raza, A.; Baleanu, D.; Rafiq, M.; Iqbal, Z.; Ahmad, M.O. Design, Analysis and Comparison of a Nonstandard Computational Method for the Solution of a General Stochastic Fractional Epidemic Model. Axioms 2022, 11, 10. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 67–87. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 2018, 55, 248–264. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations in two space dimensions. Phys. Rev. E 2008, 77, 016602. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Ahmed, N.; Rafiq, M. Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model. Mathematics 2019, 7, 1157. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Linear model of dissipation whose q is almost frequency independent. II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Mittag-Leffler, M.G. Sur la nouvelle fonction Eα(x). Comptes Rendus Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, M.G. Sur la representation analytique d’une branche uniforme d’une fonction monogene. Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering; Book Section 2; Elsevier: Amsterdam, The Netherlands, 1999; Volume 198, pp. 41–119. [Google Scholar]
- Li, Y.; Chen, Y.; Podlubny, I. Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Biala, T.A.; Khaliq, A.Q.M. A fractional-order compartmental model for the spread of the COVID-19 pandemic. Commun. Nonlinear Sci. Numer. Simul. 2021, 98, 105764. [Google Scholar] [CrossRef] [PubMed]
- Jawaz, M.; Rehman, M.A.; Ahmed, N.; Baleanu, D.; Iqbal, M.S.; Rafiq, M.; Raza, A. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion. Int. J. Nonlinear Sci. Numer. Simul. 2022. [Google Scholar] [CrossRef]
- Leon, C.V. Volterra Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 75–85. [Google Scholar] [CrossRef]
Parameters | Values (VFSS) | Values (VESS) |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, Z.; Macías-Díaz, J.E.; Ahmed, N.; Javaid, A.; Rafiq, M.; Raza, A. Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases. Symmetry 2022, 14, 2540. https://doi.org/10.3390/sym14122540
Iqbal Z, Macías-Díaz JE, Ahmed N, Javaid A, Rafiq M, Raza A. Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases. Symmetry. 2022; 14(12):2540. https://doi.org/10.3390/sym14122540
Chicago/Turabian StyleIqbal, Zafar, Jorge E. Macías-Díaz, Nauman Ahmed, Aqsa Javaid, Muhammad Rafiq, and Ali Raza. 2022. "Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases" Symmetry 14, no. 12: 2540. https://doi.org/10.3390/sym14122540
APA StyleIqbal, Z., Macías-Díaz, J. E., Ahmed, N., Javaid, A., Rafiq, M., & Raza, A. (2022). Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases. Symmetry, 14(12), 2540. https://doi.org/10.3390/sym14122540