Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals
Abstract
:1. Introduction
2. KRZ Prametrized Metric
3. Waveform Model for KRZ Black Holes
- First, we consider the brown dwarf of the X-MRI as a point particle.
- Second, we use the given metric to calculate the particle’s trajectory by integrating the geodesic equations that contain the radiation flux.
- Finally, we use the quadrupole expression to obtain the GWs emitted from the system of the X-MRI.
4. Data Analysis
4.1. The Overlaps between Simulated GW Signals of X-MRIs and GW Series with Varying Parameters
4.2. Evaluate the Accuracy of Parameter Estimation for X-MRIs
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FF | fitting factor |
GC | Galactic Center |
GW | gravitational wave |
GR | general relativity |
LIGO | Laser Interferometer Gravitation Wave Observatory |
LISA | Laser Interferometer Space Antenna |
MBH | massive black hole |
SNR | signal-to-noise ratio |
X-MRI | extremely large mass-ratio inspiral |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 2021, 11, 021053. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar]
- Acernese, F.A.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2014, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- The KAGRA Collaboration. KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 2019, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P.; Gair, J.R.; Freitag, M.; Miller, M.C.; Mandel, I.; Cutler, C.J.; Babak, S. Intermediate and extreme mass-ratio inspirals—Astrophysics, science applications and detection using LISA. Class. Quantum Gravity 2007, 24, R113. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef] [Green Version]
- Gair, J.R.; Tang, C.; Volonteri, M. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function. Phys. Rev. D 2010, 81, 104014. [Google Scholar] [CrossRef] [Green Version]
- Chua, A.J.; Moore, C.J.; Gair, J.R. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D 2017, 96, 044005. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Le Tiec, A.; Vincent, F.H.; Warburton, N. Gravitational waves from bodies orbiting the Galactic Center black hole and their detectability by LISA. Astron. Astrophys. 2019, 627, A92. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P. Extremely large mass-ratio inspirals. Phys. Rev. D 2019, 99, 123025. [Google Scholar] [CrossRef] [Green Version]
- Burrows, A.; Liebert, J. The science of brown dwarfs. Rev. Mod. Phys. 1993, 65, 301. [Google Scholar] [CrossRef]
- Freitag, M. Gravitational waves from stars orbiting the Sagittarius A* black hole. ApJ 2002, 583, L21. [Google Scholar] [CrossRef]
- Eckart, A.; Genzel, R. Observations of stellar proper motions near the Galactic Centre. Nature 1996, 383, 415–417. [Google Scholar] [CrossRef]
- Ghez, A.M.; Klein, B.; Morris, M.; Becklin, E. High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. ApJ 1998, 509, 678. [Google Scholar] [CrossRef] [Green Version]
- Ghez, A.M.; Salim, S.; Weinberg, N.; Lu, J.; Do, T.; Dunn, J.; Matthews, K.; Morris, M.; Yelda, S.; Becklin, E.; et al. Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. ApJ 2008, 689, 1044. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Eisenhauer, F.; Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 2010, 82, 3121. [Google Scholar] [CrossRef]
- Afrin, M.; Kumar, R.; Ghosh, S.G. Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87. MNRAS 2021, 504, 5927–5940. [Google Scholar] [CrossRef]
- Konoplya, R.; Rezzolla, L.; Zhidenko, A. General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 2016, 93, 064015. [Google Scholar] [CrossRef]
- Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R.X.; Adkins, V.K.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Tests of General Relativity with GWTC-3. arXiv 2021, arXiv:gr-qc/2112.06861. [Google Scholar]
- Hu, S.; Deng, C.; Li, D.; Wu, X.; Liang, E. Observational signatures of Schwarzschild-MOG black holes in scalar-tensor-vector gravity: Shadows and rings with different accretions. Eur. Phys. J. C 2022, 82, 1–17. [Google Scholar]
- Cao, W.; Liu, W.; Wu, X. Integrability of Kerr-Newman spacetime with cloud strings, quintessence and electromagnetic field. Phys. Rev. D 2022, 105, 124039. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, N.; Liu, W.; Wu, X. Equivalence between two charged black holes in dynamics of orbits outside the event horizons. Gen. Relat. Gravity 2022, 54, 1–22. [Google Scholar] [CrossRef]
- Yang, D.; Cao, W.; Zhou, N.; Zhang, H.; Liu, W.; Wu, X. Chaos in a Magnetized Modified Gravity Schwarzschild Spacetime. Universe 2022, 8, 320. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, N.; Liu, W.; Wu, X. Charged particle motions near non-Schwarzschild black holes with external magnetic fields in modified theories of gravity. Universe 2021, 7, 488. [Google Scholar] [CrossRef]
- Yi, M.; Wu, X. Dynamics of charged particles around a magnetically deformed Schwarzschild black hole. Phys. Scr. 2020, 95, 085008. [Google Scholar] [CrossRef]
- Johannsen, T.; Psaltis, D. Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 2011, 83, 124015. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Jiang, J.; Bambi, C. Testing the Kerr metric with the iron line and the KRZ parametrization. J. Cosmol. Astropart. Phys. 2016, 2016, 014. [Google Scholar] [CrossRef] [Green Version]
- Drake, S.P.; Szekeres, P. Uniqueness of the Newman–Janis algorithm in generating the Kerr–Newman metric. Gen. Relativ. Gravity 2000, 32, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Bambi, C.; Steiner, J.F. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes. JCAP 2015, 2015, 025. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.H.; Horowitz, G.T. Rotating dilaton black holes. Phys. Rev. D 1992, 46, 1340. [Google Scholar] [CrossRef]
- Cardoso, V.; Pani, P.; Rico, J. On generic parametrizations of spinning black-hole geometries. Phys. Rev. D 2014, 89, 064007. [Google Scholar] [CrossRef] [Green Version]
- Younsi, Z.; Zhidenko, A.; Rezzolla, L.; Konoplya, R.; Mizuno, Y. New method for shadow calculations: Application to parametrized axisymmetric black holes. Phys. Rev. D 2016, 94, 084025. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Zhang, H.; Liu, W.; Wu, X. A Note on the Construction of Explicit Symplectic Integrators for Schwarzschild Spacetimes. ApJ 2022, 927, 160. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. I. Schwarzschild Black Holes. ApJ 2021, 907, 66. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. II. Reissner–Nordström Black Holes. ApJ 2021, 909, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of Explicit Symplectic Integrators in General Relativity. III. Reissner–Nordström-(anti)-de Sitter Black Holes. ApJ S 2021, 254, 8. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Sun, W.; Liu, F. Construction of explicit symplectic integrators in general relativity. IV. Kerr black holes. ApJ 2021, 914, 63. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Liu, F.; Wu, X. Applying explicit symplectic integrator to study chaos of charged particles around magnetized Kerr black hole. Eur. Phys. J. C 2021, 81, 1–10. [Google Scholar] [CrossRef]
- Xin, S.; Han, W.B.; Yang, S.C. Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys. Rev. D 2019, 100, 084055. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.A. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys. Rev. D 2001, 64, 064004. [Google Scholar] [CrossRef]
- Barack, L.; Cutler, C. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 2004, 69, 082005. [Google Scholar] [CrossRef] [Green Version]
- Drasco, S.; Hughes, S.A. Gravitational wave snapshots of generic extreme mass ratio inspirals. Phys. Rev. D 2006, 73, 024027. [Google Scholar] [CrossRef] [Green Version]
- Babak, S.; Fang, H.; Gair, J.R.; Glampedakis, K.; Hughes, S.A. “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D 2007, 75, 024005. [Google Scholar] [CrossRef] [Green Version]
- Chua, A.J.; Gair, J.R. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class. Quantum Gravity 2015, 32, 232002. [Google Scholar] [CrossRef]
- Rüdiger, R. Conserved quantities of spinning test particles in general relativity. I. Proc. R. Soc. Lond. Math. Phys. Sci. 1981, 375, 185–193. [Google Scholar]
- Rüdiger, R. Conserved quantities of spinning test particles in general relativity. II. Proc. R. Soc. Lond. Math. Phys. Sci. 1983, 385, 229–239. [Google Scholar]
- Wang, S.C.; Wu, X.; Liu, F.Y. Implementation of the velocity scaling method for elliptic restricted three-body problems. MNRAS 2016, 463, 1352–1362. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.; Wu, X. Simulations of dissipative circular restricted three-body problems using the velocity-scaling correction method. ApJ 2018, 155, 67. [Google Scholar] [CrossRef]
- Deng, C.; Wu, X.; Liang, E. The use of Kepler solver in numerical integrations of quasi-Keplerian orbits. MNRAS 2020, 496, 2946–2961. [Google Scholar] [CrossRef]
- Li, D.; Wu, X. Modification of logarithmic Hamiltonians and application of explicit symplectic-like integrators. MNRAS 2017, 469, 3031–3041. [Google Scholar] [CrossRef]
- Luo, J.; Wu, X.; Huang, G.; Liu, F. Explicit symplectic-like integrators with midpoint permutations for spinning compact binaries. ApJ 2017, 834, 64. [Google Scholar] [CrossRef]
- Pan, G.; Wu, X.; Liang, E. Extended phase-space symplectic-like integrators for coherent post-Newtonian Euler-Lagrange equations. Phys. Rev. D 2021, 104, 044055. [Google Scholar] [CrossRef]
- Liu, L.; Wu, X.; Huang, G.; Liu, F. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta. MNRAS 2016, 459, 1968–1976. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Wu, X.; Liu, F. On preference of Yoshida construction over Forest–Ruth fourth-order symplectic algorithm. Eur. Phys. J. C 2013, 73, 1–8. [Google Scholar] [CrossRef]
- Mei, L.; Ju, M.; Wu, X.; Liu, S. Dynamics of spin effects of compact binaries. MNRAS 2013, 435, 2246–2255. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.Y.; Wu, X.; Liu, S.Q.; Deng, X.F. Global symplectic structure-preserving integrators for spinning compact binaries. Phys. Rev. D 2010, 82, 124040. [Google Scholar] [CrossRef]
- Finn, L.S. Detection, measurement, and gravitational radiation. Phys. Rev. D 1992, 46, 5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabrier, G.; Baraffe, I. Theory of low-mass stars and substellar objects. Annu. Rev. Astron. Astrophys. 2000, 38, 337–377. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, R.V.; Penna, R.F.; McKinney, J.C. Sagittarius A* accretion flow and black hole parameters from general relativistic dynamical and polarized radiative modeling. ApJ 2012, 755, 133. [Google Scholar] [CrossRef]
- Eisenhauer, F.; Schödel, R.; Genzel, R.; Ott, T.; Tecza, M.; Abuter, R.; Eckart, A.; Alexander, T. A geometric determination of the distance to the galactic center. ApJ 2003, 597, L121. [Google Scholar] [CrossRef]
- Menten, K.M.; Reid, M.J.; Eckart, A.; Genzel, R. The position of Sagittarius A*: Accurate alignment of the radio and infrared reference frames at the Galactic Center. ApJ 1997, 475, L111. [Google Scholar] [CrossRef] [Green Version]
- Glampedakis, K.; Babak, S. Mapping spacetimes with LISA: Inspiral of a test body in a ‘quasi-Kerr’field. Class. Quantum Gravity 2006, 23, 4167. [Google Scholar] [CrossRef]
- Cutler, C.; Flanagan, E.E. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 1994, 49, 2658. [Google Scholar] [CrossRef] [Green Version]
- Babak, S.; Gair, J.; Sesana, A.; Barausse, E.; Sopuerta, C.F.; Berry, C.P.; Berti, E.; Amaro-Seoane, P.; Petiteau, A.; Klein, A. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D 2017, 95, 103012. [Google Scholar] [CrossRef] [Green Version]
- Han, W.B.; Chen, X. Testing general relativity using binary extreme-mass-ratio inspirals. MNRAS 2019, 485, L29–L33. [Google Scholar] [CrossRef]
Signal | e | p | SNR | |||||||
---|---|---|---|---|---|---|---|---|---|---|
01 | ||||||||||
02 | ||||||||||
03 | ||||||||||
04 | ||||||||||
05 | ||||||||||
06 | ||||||||||
07 | ||||||||||
08 | ||||||||||
09 | ||||||||||
10 | ||||||||||
11 | ||||||||||
12 | ||||||||||
13 | ||||||||||
14 | ||||||||||
15 | ||||||||||
16 | ||||||||||
17 | ||||||||||
18 | ||||||||||
19 | ||||||||||
20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-C.; Luo, H.-J.; Zhang, Y.-H.; Zhang, C. Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals. Symmetry 2022, 14, 2558. https://doi.org/10.3390/sym14122558
Yang S-C, Luo H-J, Zhang Y-H, Zhang C. Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals. Symmetry. 2022; 14(12):2558. https://doi.org/10.3390/sym14122558
Chicago/Turabian StyleYang, Shu-Cheng, Hui-Jiao Luo, Yuan-Hao Zhang, and Chen Zhang. 2022. "Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals" Symmetry 14, no. 12: 2558. https://doi.org/10.3390/sym14122558
APA StyleYang, S. -C., Luo, H. -J., Zhang, Y. -H., & Zhang, C. (2022). Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals. Symmetry, 14(12), 2558. https://doi.org/10.3390/sym14122558