Spectral Parameter as a Group Parameter
Abstract
:1. Introduction
2. Classical Soliton Equations and Scaling Transformations
3. ZS-AKNS Hierarchy and Scaling Transformations
4. Galilean Transformation
5. Lie Point Symmetries’ Algebras and
6. Geometric Cases
6.1. Constant Mean Curvature Surfaces
6.2. Generalized Bianchi System
6.3. Isothermic Surfaces
6.4. Open Problem: Chebyshev and Semi-Geodesic Coordinates
7. Spectral Parameter as a Group Parameter—Recent Results
7.1. Hyper-CR Equation for Einstein–Weyl Structures
7.2. Four-Dimensional Bogdanov–Pavlov Equation
7.3. Martínez Alonso–Shabat Equation
8. Extended Lie Point Symmetries
8.1. Non-Homogeneous Non-Linear Schrödinger System
8.2. Generalized Bianchi System
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Hyper-CR Equation for Einstein–Weyl Structures
Appendix A.2. Four-Dimensional Bogdanov–Pavlov Equation
Appendix A.3. Martínez Alonso–Shabat Equation
References
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Plenum: New York, NY, USA, 1984. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Newell, A.C. Solitons in Mathematics and Physics; SIAM: Philadelphia, PA, USA, 1985. [Google Scholar]
- Sasaki, R. Soliton equations and pseudospherical surfaces. Nucl. Phys. B 1979, 154, 343–357. [Google Scholar] [CrossRef]
- Levi, D.; Sym, A. Integrable systems describing surfaces of non-constant curvature. Phys. Lett. A 1990, 149, 381–387. [Google Scholar] [CrossRef]
- Levi, D.; Sym, A.; Tu, G.Z. A Working Algorithm to Isolate Integrable Surfaces in E3; Universitá di Roma: Rome, Italy, 1990. [Google Scholar]
- Krasil’shchik, I.S.; Vinogradov, A.M. Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 1989, 15, 161–209. [Google Scholar] [CrossRef]
- Cieśliński, J. Lie symmetries as a tool to isolate integrable geometries. In Nonlinear Evolution Equations and Dynamical Systems (Proceedings NEEDS’91); Boiti, M., Martina, L., Pempinelli, F., Eds.; World Scientific: Singapore, 1992; pp. 260–268. [Google Scholar]
- Cieśliński, J.L.; Goldstein, P.; Sym, A. On integrability of the inhomogeneous Heisenberg ferromagnet model: Examination of a new test. J. Phys. A Math. Gen. 1994, 27, 1645–1664. [Google Scholar] [CrossRef]
- Estévez, P.G.; Gandarias, M.L.; Prada, J. Symmetry reductions of a 2+1 Lax pair. Phys. Lett. A 2005, 343, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Estévez, P.G.; Lejarreta, J.D.; Sardón, C. Integrable 1+1 dimensional hierarchies arising from reduction of a non-isospectral problem in 2+1 dimensions. Appl. Math. Comput. 2013, 224, 311–324. [Google Scholar] [CrossRef]
- Albares, P.; Estévez, P.G. Miura-reciprocal transformation and symmetries for the spectral problems of KdV and mKdV. Mathematics 2021, 9, 926. [Google Scholar] [CrossRef]
- Marvan, M. On the horizontal gauge cohomology and non-removability of the spectral parameter. Acta Appl. Math. 2002, 72, 51–65. [Google Scholar] [CrossRef]
- Marvan, M. Scalar second-order evolution equations possessing an irreducible sl2-valued zero-curvature representation. J. Phys. A Math. Gen. 2002, 35, 9431–9439. [Google Scholar] [CrossRef] [Green Version]
- Marvan, M. On the spectral parameter problem. Acta Appl. Math. 2010, 109, 239–255. [Google Scholar] [CrossRef]
- Sakovich, S.Y. On conservation laws and zero-curvature representations of the Liouville equation. J. Phys. A Math. Gen. 1994, 27, L125–L129. [Google Scholar] [CrossRef]
- Morozov, O.I. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations. J. Geom. Phys. 2018, 128, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Morozov, O.I. Lax representations with non-removable parameters and integrable hierarchies of PDEs via exotic cohomology of symmetry algebras. J. Geom. Phys. 2019, 143, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Ferraioli, D.C.; de Oliveira Silva, L.A. Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry actions. J. Geom. Phys. 2015, 94, 185–198. [Google Scholar] [CrossRef]
- Cieśliński, J.L. Algebraic construction of the Darboux matrix revisited. J. Phys. A Math. Theor. 2009, 42, 404003. [Google Scholar] [CrossRef] [Green Version]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Baran, H.; Marvan, M. Jets. A Software for Differential Calculus on Jet Spaces and Diffieties; Software Guide; Silesian University: Opava, Czech Republic, 2003. [Google Scholar]
- Marvan, M. Sufficient set of integrability conditions of an orthonomic system. Found. Comput. Math. 2009, 9, 651–674. [Google Scholar] [CrossRef]
- Cieśliński, J. Zastosowania Geometrii Solitonów (Applications of the Geometry of Solitons). Ph.D. Thesis, Uniwersytet Warszawski, Wydział Fizyki, Warszawa, Poland, 1992. (In Polish). [Google Scholar]
- Lund, F.; Regge, T. Unified approach to strings and vortices with soliton solutions. Phys. Rev. D 1976, 14, 1524–1535. [Google Scholar] [CrossRef]
- Sym, A. Soliton surfaces and their application (Soliton geometry from spectral problems). In Geometric Aspects of the Einstein Equations and Integrable Systems; Lecture Notes in Physics No 239; Martini, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 154–231. [Google Scholar]
- Cieśliński, J. The Darboux-Bianchi-Bäcklund transformation and soliton surfaces. In Nonlinearity and Geometry (Proceedings NOSONGE’95); Wójcik, D., Cieśliński, J., Eds.; Polish Scientific Publishers PWN: Warsaw, Poland, 1998; pp. 81–107. [Google Scholar]
- Jaworski, M.; Kaup, M. Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation. Inverse Probl. 1990, 6, 543. [Google Scholar] [CrossRef]
- Cieslinski, J.L. The structure of spectral problems and geometry: Hyperbolic surfaces in E3. J. Phys. A Math. Gen. 2003, 36, 6423–6440. [Google Scholar]
- Cieśliński, J.; Goldstein, P.; Sym, A. Isothermic surfaces in E3 as soliton surfaces. Phys. Lett. A 1995, 205, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Hasiewicz, Z. Iterated Darboux transformation for isothermic surfaces in terms of Clifford numbers. Symmetry 2021, 13, 148. [Google Scholar] [CrossRef]
- Cieśliński, J. The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach. Diff. Geom. Appl. 1997, 7, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Kobus, A. Group interpretation of the spectral parameter. The case of isothermic surfaces. J. Geom. Phys. 2017, 113, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Krasil’shchik, J.; Marvan, M. Coverings and integrability of the Gauss-Mainardi-Codazzi equations. Acta Appl. Math. 1999, 56, 217–230. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Pavlov, M.V. Linearly degenerate hierarchies of quasiclassical SDYM type. J. Math. Phys. 2017, 58, 093505. [Google Scholar] [CrossRef] [Green Version]
- Dunajski, M. A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type. J. Geom. Phys. 2004, 51, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, M.V. Integrable hydrodynamic chains. J. Math. Phys. 2003, 44, 4134–4156. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L.M.; Shabat, A.B. Hydrodynamic reductions and solutions of a universal hierarchy. Theoret. Math. Phys. 2004, 140, 1073–1085. [Google Scholar] [CrossRef] [Green Version]
- Morozov, O.I. The four-dimensional Martínez Alonso-Shabat equation: Differential coverings and recursion operators. J. Geom. Phys. 2014, 85, 75–80. [Google Scholar] [CrossRef]
- Baran, H.; Krasil’shchik, I.S.; Morozov, O.I.; Vojčák, P. Five-dimensional Lax-integrable equation, its reductions and recursion operator. Lobachevskii J. Math. 2015, 36, 225–233. [Google Scholar] [CrossRef]
- Vaneeva, O.; Pošta, S. Equivalence groupoid of a class of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 2017, 58, 101504. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.L.; Sym, A.; Wesselius, W. On the geometry of the inhomogeneous Heisenberg ferromagnet: Nonintegrable case. J. Phys. A Math. Gen. 1993, 26, 1353–1364. [Google Scholar] [CrossRef]
- Lakshmanan, M.; Bullough, R.K. Geometry of generalized nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with linearly x-dependent coefficients. Phys. Lett. A 1980, 80, 287–292. [Google Scholar] [CrossRef]
- Cieśliński, J. Non-local symmetries and a working algorithm to isolate integrable geometries. J. Phys. A Math. Gen. 1993, 26, L267–L271. [Google Scholar] [CrossRef]
- Cieśliński, J. Group interpretation of the spectral parameter in the case of nonhomogeneous, nonlinear Schro¨dinger system. J. Math. Phys. 1993, 34, 2372–2384. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśliński, J.L.; Zhalukevich, D. Spectral Parameter as a Group Parameter. Symmetry 2022, 14, 2577. https://doi.org/10.3390/sym14122577
Cieśliński JL, Zhalukevich D. Spectral Parameter as a Group Parameter. Symmetry. 2022; 14(12):2577. https://doi.org/10.3390/sym14122577
Chicago/Turabian StyleCieśliński, Jan L., and Dzianis Zhalukevich. 2022. "Spectral Parameter as a Group Parameter" Symmetry 14, no. 12: 2577. https://doi.org/10.3390/sym14122577
APA StyleCieśliński, J. L., & Zhalukevich, D. (2022). Spectral Parameter as a Group Parameter. Symmetry, 14(12), 2577. https://doi.org/10.3390/sym14122577